Combination of Nonlinear Terms in Interval Constraint Satisfaction Techniques

Nonlinear constraint systems can be solved by combining consistency techniques and search. In this approach, the search space is reduced using local reasoning on constraints. However, local computations may lead to slow convergences. In order to handle this problem, we introduce a symbolic technique to combine nonlinear constraints. Such redundant constraints are further simplified according to the precision of interval computations. As a consequence, constraint reasoning becomes tighter and the solving process faster. The efficiency of this approach is shown using experimental results from a prototype.

[1]  N. Bose Multidimensional Systems Theory , 1985 .

[2]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[3]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[4]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[5]  Claude Kirchner,et al.  ELAN from a rewriting logic point of view , 2002, Theor. Comput. Sci..

[6]  M. H. van Emden,et al.  Algorithmic Power from Declarative Use of Redundant Constraints , 1999, Constraints.

[7]  Laurent Granvilliers,et al.  On the Combination of Interval Constraint Solvers , 2001, Reliab. Comput..

[8]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[9]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[10]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[11]  Eric Monfroy,et al.  Symbolic-interval cooperation in constraint programming , 2001, ISSAC '01.

[12]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[13]  Frédéric Benhamou,et al.  Progress in the Solving of a Circuit Design Problem , 2001, J. Glob. Optim..

[14]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[15]  Michael J. Maher,et al.  Solving Numerical Constraints , 2001, Handbook of Automated Reasoning.

[16]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[17]  Frédéric Benhamou,et al.  Automatic Generation of Numerical Redundancies for Non-Linear Constraint Solving , 1997, Reliab. Comput..