Simultaneous determination of the diffusion and absorption coefficient from boundary data

We consider the inverse problem of determining both an unknown diffusion and an unknown absorption coefficient from knowledge of (partial) Cauchy data in an elliptic boundary value problem. For piecewise analytic coefficients, we prove a complete characterization of the reconstructible information. It is shown to consist of a combination of both coefficients together with the jumps in the leading order diffusion coefficient and its derivative.

[1]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[2]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[3]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[4]  Masahiro Yamamoto,et al.  The Calderón problem with partial data in two dimensions , 2010 .

[5]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[6]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[7]  V. Isakov On uniqueness in the inverse conductivity problem with local data , 2007 .

[8]  Kim Knudsen The Calderón Problem with Partial Data for Less Smooth Conductivities , 2006 .

[9]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[10]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[11]  Nuutti Hyvönen,et al.  Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem , 2008 .

[12]  Jin Cheng,et al.  Determination of Two Convection Coefficients from Dirichlet to Neumann Map in the Two-Dimensional Case , 2004, SIAM J. Math. Anal..

[13]  V. Isakov Appendix -- Function Spaces , 2017 .

[14]  Local uniqueness for the inverse boundary problem for the two-dimensional diffusion equation , 2000, European Journal of Applied Mathematics.

[15]  Matti Lassas,et al.  The Calderon problem for conormal potentials, I: Global uniqueness and reconstruction , 2001 .

[16]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[17]  S. Arridge,et al.  Nonuniqueness in diffusion-based optical tomography. , 1998, Optics letters.

[18]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[19]  B. Harrach On uniqueness in diffuse optical tomography , 2009 .

[20]  David Isaacson,et al.  Comment on Calderon's Paper: "On an Inverse Boundary Value Problem" , 1989 .

[21]  Samuli Siltanen,et al.  Direct electrical impedance tomography for nonsmooth conductivities , 2011 .

[22]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[23]  Vladimir Druskin On the Uniqueness of Inverse Problems from Incomplete Boundary Data , 1998, SIAM J. Appl. Math..

[24]  G. Uhlmann,et al.  RECOVERING A POTENTIAL FROM PARTIAL CAUCHY DATA , 2002 .

[25]  Gunther Uhlmann Commentary on Calderón’s paper 28, On an Inverse Boundary Value Problem , 2006 .

[26]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[27]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[28]  G. Uhlmann,et al.  Partial Cauchy data for general second order elliptic operators in two dimensions , 2010, 1010.5791.

[29]  Giovanni Alessandrini,et al.  Singular solutions of elliptic equations and the determination of conductivity by boundary measurements , 1990 .

[30]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[31]  Bastian Gebauer,et al.  Localized potentials in electrical impedance tomography , 2008 .

[32]  G. Uhlmann,et al.  Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field , 1995 .

[33]  Allaberen Ashyralyev,et al.  Partial Differential Equations of Elliptic Type , 2004 .

[34]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[35]  G. Uhlmann,et al.  The Calderón problem with partial data , 2004 .

[36]  Masahiro Yamamoto,et al.  Determination of second-order elliptic operators in two dimensions from partial Cauchy data , 2010, Proceedings of the National Academy of Sciences.

[37]  Victor Isakov,et al.  On uniqueness of recovery of a discontinuous conductivity coefficient , 1988 .

[38]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[39]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .