A spectral resolution of the large sieve

The quadratic form $V(\varphi,Q)=\sum_{q\sim Q}\sum_{a\mod^* q}|S(\varphi,a/q)|^2$ and its eigenvalues are well understood when $Q=o(\sqrt{N})$, while $V(\varphi,Q)$ is expected to behave like a Riemann sum when $N=o(Q)$. The behavior in the range $Q\in[\sqrt{N},100 N]$ is still mysterious. In the present work we present a full spectral analysis when $Q\ge N^{7/8}$ in terms of the eigenvalues of a one-parameter family of nuclear difference operators. We show in particular that (a smoothed version of) the quadratic form $V(\varphi,Q)$ may stay \emph{away} from $(6/\pi^2)Q\sum_n|\varphi_n|^2$ when $Q\asymp N$, though only on a vector space of positive but small dimension.

[1]  O. Ramar'e Notes on restriction theory in the primes , 2021, 2109.10180.

[2]  Maksym Radziwill,et al.  Limiting distribution of eigenvalues in the large sieve matrix , 2016, Journal of the European Mathematical Society.

[3]  H. Iwaniec,et al.  Small gaps between zeros of twisted L-functions , 2012, 1202.2671.

[4]  J. Schlage-Puchta LOWER BOUNDS FOR EXPRESSIONS OF LARGE SIEVE TYPE , 2011, 1105.1307.

[5]  H. Iwaniec,et al.  Asymptotic Large Sieve , 2011, 1105.1176.

[6]  T. Chan,et al.  On sums of Ramanujan sums , 2010, 1009.4432.

[7]  D. S. Ramana,et al.  Arithmetical Aspects of the Large Sieve Inequality , 2009 .

[8]  Olivier Ramaré,et al.  Eigenvalues in the large sieve inequality , 2007 .

[9]  M. Jutila Distribution of rational numbers in short intervals , 2007 .

[10]  G. Harcos An additive problem in the Fourier coefficients of cusp forms , 2001, math/0101096.

[11]  O. Kovrizhkin Some results related to the Logvinenko-Sereda theorem , 2000, math/0012186.

[12]  P. Elliott Duality in Analytic Number Theory , 1997 .

[13]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[14]  H. Iwaniec,et al.  Estimates for coefficients of L -functions. III , 1994 .

[15]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[16]  A. Berthier,et al.  On support properties of Lp-functions and their Fourier transforms , 1977 .

[17]  D. Wolke A Lower Bound for the Large Sieve Inequality , 1974 .

[18]  V. È. Kacnel'son EQUIVALENT NORMS IN SPACES OF ENTIRE FUNCTIONS , 1973 .

[19]  S. Uchiyama The maximal large sieve , 1972 .

[20]  Dale W. Swann Some new classes of kernels whose Fredholm determinants have order less than one , 1971 .

[21]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[22]  Anthony Leonard,et al.  INTEGRAL EQUATIONS WITH DIFFERENCE KERNELS ON FINITE INTERVALS. , 1965 .

[23]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[24]  Ralph P. Boas,et al.  OF ENTIRE FUNCTIONS , 2016 .

[25]  L. Debnath Tables of Integral Transforms , 2012 .

[26]  M. Garaev The large sieve for , 2005 .

[27]  H. Iwaniec,et al.  Analytic Number Theory , 2021, All the Math You Missed.

[28]  F. Dress Discrépance des suites de Farey , 1999 .

[29]  Israel Gohberg,et al.  Traces and determinants of linear operators , 1996 .

[30]  H. Iwaniec,et al.  A mean-value theorem for character sums. , 1992 .

[31]  P. Elliott Additive Arithmetic Functions on Arithmetic Progressions , 1987 .

[32]  I. Kobayashi A note on the Selberg Sieve and the large sieve , 1973 .

[33]  J. A. Cochran The analysis of linear integral equations , 1973 .

[34]  Enrico Bombieri,et al.  A note on the large sieve , 1971 .

[35]  M. Huxley The distribution of Farey points, I , 1971 .

[36]  G. Julia Sur une classe d'équations fonctionnelles , 1923 .