Analyzing and Forecasting Tourism Demand: A Rough Sets Approach

This article reports a study that applies the rough sets algorithm to tourism demand analysis. Empirical outcomes are a set of automated but practical decision rules for practitioners from data that have a high degree of vagueness. We also introduce two new measures of qualitative noneconomic factors, namely a leisure time index and climate index into the forecasting framework. On the basis of long-haul U.S. and U.K. tourism demand for Hong Kong, empirical results show that leisure time and climate have stronger impacts on tourist arrivals than economic factors. Comprehensible decision rules are generated and tourism demand forecasts attain an accuracy of up to 80%. The findings put forward the importance of qualitative non- economic factors in travel motivation theory and demand analysis.

[1]  Francis Eng Hock Tay,et al.  Economic and financial prediction using rough sets model , 2002, Eur. J. Oper. Res..

[2]  M. Obersteiner,et al.  Determinants of Long-term Economic Development: An Empirical Cross-country Study Involving Rough Sets Theory and Rule Induction , 1999 .

[3]  Theodore Johnson,et al.  Exploratory Data Mining and Data Cleaning , 2003 .

[4]  Han Tong Loh,et al.  Applying rough sets to market timing decisions , 2004, Decis. Support Syst..

[5]  Haiyan Song,et al.  Recent Developments in Econometric Modeling and Forecasting , 2005 .

[6]  Paul D. Scott,et al.  Forming Categories in Exploratory Data Analysis and Data Mining , 1997, IDA.

[7]  Szymon Wilk,et al.  ROSE - Software Implementation of the Rough Set Theory , 1998, Rough Sets and Current Trends in Computing.

[8]  Rob Law,et al.  Incorporating the rough sets theory into travel demand analysis , 2003 .

[9]  Wojciech Ziarko,et al.  A methodology for stock market analysis utilizing rough set theory , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[10]  Gang Li,et al.  Modeling Tourism Demand: A Dynamic Linear AIDS Approach , 2004 .

[11]  S. F. Witt,et al.  Forecasting the Demand for International Business Tourism , 2003 .

[12]  Hailin Qu,et al.  The relationship between vacation factors and socio-demographic and travelling characteristics: the case of Japanese leisure travellers. , 2001 .

[13]  Anders Torvill Bjorvand Mining Time Series Using Rough Sets - A Case Study , 1997, PKDD.

[14]  Lee Choong-Ki,et al.  Determinants of Inbound Tourist Expenditures , 1996 .

[15]  W. Noyes United Nations Educational, Scientific and Cultural Organization , 1946, International Organization.

[16]  Maxwell L. King,et al.  Forecasting international quarterly tourist flows using error-correction and time-series models , 1997 .

[17]  Martina G. Gallarza,et al.  Destination image: towards a conceptual framework. , 2002 .

[18]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[19]  J. Crompton,et al.  Development of pleasure travel attitude dimensions , 1991 .

[20]  Stephen F. Witt,et al.  Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models , 2001 .

[21]  Rob Law,et al.  Relationship modeling in tourism shopping: a decision rules induction approach. , 2000 .

[22]  Rob Law,et al.  The Application of Rough Sets to Sightseeing Expenditures , 2000 .

[23]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[24]  Nick Cercone,et al.  Discovering rules for water demand prediction: An enhanced rough-set approach☆ , 1996 .

[25]  Ramesh Durbarry,et al.  Market shares analysis: The Case of French Tourism Demand , 2003 .

[26]  Constantin Zopounidis,et al.  Multi-group discrimination using multi-criteria analysis: Illustrations from the field of finance , 2002, Eur. J. Oper. Res..

[27]  Michael McAleer,et al.  MONTHLY SEASONAL VARIATIONS: ASIAN TOURISM TO AUSTRALIA , 2001 .

[28]  Stephen F. Witt,et al.  Tourism Demand Analysis Using Structural Equation Modelling , 1998 .

[29]  P. Young,et al.  An analysis of international tourism demand in Spain. , 1997 .

[30]  Dennis Shasha,et al.  Declarative Data Cleaning: Language, Model, and Algorithms , 2001, VLDB.

[31]  Costas Siriopoulos,et al.  The Demand for Tourism to Greece: A Cointegration Approach , 1998 .

[32]  H. Aiyan,et al.  Modelling and forecasting the demand for Thai tourism , 2005 .

[33]  C. Lim,et al.  An Econometric Classification and Review of International Tourism Demand Models , 1997 .

[34]  Malcolm James Beynon,et al.  Knowledge discovery in marketing: An approach through Rough Set Theory , 2001 .

[35]  Z. Mieczkowski,et al.  THE TOURISM CLIMATIC INDEX: A METHOD OF EVALUATING WORLD CLIMATES FOR TOURISM , 1985 .

[36]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[37]  Haiyan Song,et al.  Modelling and forecasting the demand for Hong Kong tourism , 2003 .

[38]  Joseph M. Hellerstein,et al.  Potter's Wheel: An Interactive Data Cleaning System , 2001, VLDB.

[39]  Malcolm J. Beynon,et al.  An illustration of variable precision rough sets model: an analysis of the findings of the UK Monopolies and Mergers Commission , 2005, Comput. Oper. Res..

[40]  Rob Law,et al.  A neural network model to forecast Japanese demand for travel to Hong Kong , 1999 .

[41]  Huan Liu,et al.  Discretization: An Enabling Technique , 2002, Data Mining and Knowledge Discovery.

[42]  Dirk Van den Poel,et al.  Rough Sets for Database Marketing , 1998 .

[43]  Rob Law,et al.  A Rough Set Approach To Hotel Expenditure Decision Rules Induction , 1998 .

[44]  Rob Law,et al.  Categorical classification of tourism dining , 2002 .

[45]  M. Beynon,et al.  Variable precision rough set theory and data discretisation: an application to corporate failure prediction , 2001 .

[46]  D. Rubinfeld,et al.  Econometric models and economic forecasts , 2002 .

[47]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[48]  Usama M. Fayyad,et al.  On the Handling of Continuous-Valued Attributes in Decision Tree Generation , 1992, Machine Learning.

[49]  Maurizio d’Amato,et al.  A comparison between mra and rough set theory for mass appraisal. A case in bari , 2004 .