Photonic technologies for angular velocity sensing

Photonics for angular rate sensing is a well-established research field having very important industrial applications, especially in the field of strapdown inertial navigation. Recent advances in this research field are reviewed. Results obtained in the past years in the development of the ring laser gyroscope and the fiber optic gyroscope are presented. The role of integrated optics and photonic integrated circuit technology in the enhancement of gyroscope performance and compactness is broadly discussed. Architectures of new slow-light integrated angular rate sensors are described. Finally, photonic gyroscopes are compared with other solid-state gyros, showing their strengths and weaknesses.

[1]  C. E. Campanella,et al.  Design of passive ring resonators to be used for sensing applications , 2009 .

[2]  Axel Scherer,et al.  Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab , 1999 .

[3]  V. J. Tekippe,et al.  Passive fiber-optic ring resonator for rotation sensing. , 1983, Optics letters.

[4]  Philippe Bouyer,et al.  Mode-coupling control in resonant devices: Application to solid-state ring lasers. , 2006, Physical review letters.

[5]  Anshi Xu,et al.  Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency. , 2007, Optics express.

[6]  Anshi Xu,et al.  Rotating sensing based on slow light coupled resonator structure with EIT-like property , 2007, International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT).

[7]  C. E. Campanella,et al.  Fast light generation through velocity manipulation in two vertically-stacked ring resonators. , 2010, Optics express.

[8]  K. Takiguchi,et al.  Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit , 2000, Journal of Lightwave Technology.

[9]  Robert W. Boyd,et al.  SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides , 2002 .

[10]  Christoph Vannahme,et al.  Integrated Optical Devices in Lithium Niobate , 2008 .

[11]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[12]  Anshi Xu,et al.  Rotation sensing based on a slow-light resonating structure with high group dispersion. , 2007, Applied optics.

[13]  P. G. Eliseev Theory of nonlinear Sagnac effect , 2008 .

[14]  G. A. Prinz,et al.  Applications of magneto-optics in ring laser gyroscopes , 1980 .

[15]  H. Shaw,et al.  An overview of fiber-optic gyroscopes , 1984, Journal of Lightwave Technology.

[16]  S. Ezekiel,et al.  Observation of lock-in behavior in a passive resonator gyroscope. , 1986, Optics letters.

[17]  H. J. Shaw,et al.  Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications , 1994 .

[18]  Mario Nicola Armenise,et al.  A new integrated optical angular velocity sensor , 2005, SPIE OPTO.

[19]  S. Ezekiel,et al.  Closed-loop, low-noise fiber-optic rotation sensor. , 1981, Optics letters.

[20]  A. Boag,et al.  Splitting of microcavity degenerate modes in rotating photonic crystals—the miniature optical gyroscopes , 2007 .

[21]  K A Winick,et al.  Planar glass waveguide ring resonators with gain. , 2007, Optics express.

[22]  Vittorio M. N. Passaro,et al.  Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides , 2009 .

[23]  C. Ciminelli,et al.  Optimized Design of Integrated Optical Angular Velocity Sensors Based on a Passive Ring Resonator , 2009, Journal of Lightwave Technology.

[24]  Shanhui Fan,et al.  Coupled resonator optical waveguide sensors: sensitivity and the role of slow light , 2009, Defense + Commercial Sensing.

[25]  R. Boyd,et al.  Distributed and localized feedback in microresonator sequences for linear and nonlinear optics , 2004 .

[26]  A. Yariv,et al.  InGaAsP annular Bragg lasers: theory, applications, and modal properties , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Kozo Taguchi,et al.  Optical inertial rotation sensor using semiconductor ring laser , 1998 .

[28]  P. Piwnicki,et al.  Ultrahigh sensitivity of slow-light gyroscope , 2000 .

[29]  J. Scheuer Direct rotation-induced intensity modulation in circular Bragg micro-lasers. , 2007, Optics express.

[30]  Jacob Scheuer,et al.  Sagnac effect in coupled-resonator slow-light waveguide structures. , 2005, Physical review letters.

[31]  M. Osiński,et al.  Monolithically integrated twin ring diode lasers for rotation sensing applications , 2006 .

[32]  M. N. Armenise,et al.  Modeling and design of a novel miniaturized integrated optical sensor for gyroscope systems , 2001 .

[33]  Vladimir S. Ilchenko,et al.  Optical gyroscope with whispering gallery mode optical cavities , 2004 .

[34]  H J Shaw,et al.  Limitation of rotation sensing by scattering. , 1980, Optics letters.

[35]  J. Pocholle,et al.  Suppression of nonlinear interactions in resonant macroscopic quantum devices: the example of the solid-state ring laser gyroscope. , 2008, Physical review letters.

[36]  M.J.F. Digonnet,et al.  Reduced Thermal Sensitivity of a Fiber-Optic Gyroscope Using an Air-Core Photonic-Bandgap Fiber , 2007, Journal of Lightwave Technology.

[37]  V. Mizrahi,et al.  Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator , 1994 .

[38]  Ping Yuan,et al.  A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency , 2008 .

[39]  Shaoul Ezekiel,et al.  Passive ring resonator laser gyroscope , 1977 .

[40]  Zhonghe Jin,et al.  Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique , 2006 .

[41]  Jacob Scheuer,et al.  Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity , 2007 .

[42]  S. Jian,et al.  Phase modulation spectroscopy using an all-fiber piezoelectric transducer modulator for a resonator fiber-optic gyroscope. , 1995, Applied optics.

[43]  K. Taguchi,et al.  Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser , 2000 .

[44]  M. Scully,et al.  Multioscillator laser gyros , 1980 .

[45]  T. King,et al.  Sources of error and noise in a magnetic mirror gyro , 1996 .

[46]  Silica waveguide ring resonators with multi-turn structure , 2008 .

[47]  F. Ayazi,et al.  A Mode-Matched Silicon-Yaw Tuning-Fork Gyroscope With Subdegree-Per-Hour Allan Deviation Bias Instability , 2008, Journal of Microelectromechanical Systems.

[48]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[49]  Irl W. Smith,et al.  Laser gyro at quantum limit , 1980 .

[50]  M.J.F. Digonnet,et al.  Air-core photonic-bandgap fiber-optic gyroscope , 2006, Journal of Lightwave Technology.