Computation of Lyapunov-Type Numbers for Invariant Curves of Planar Maps
暂无分享,去创建一个
[1] M. van Veldhuizen,et al. Convergence results for invariant curve algorithms , 1988 .
[2] Luca Dieci,et al. Computation of invariant tori by the method of characteristics , 1995 .
[3] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[4] G. Moore,et al. Computation and Parametrisation of Invariant Curves and Tori , 1996 .
[5] P. J. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[6] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[7] Robert D. Russell,et al. Computation of invariant tori by orthogonal collocation , 2000 .
[8] D. Aronson,et al. Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .
[9] Volker Reichelt,et al. Computing Invariant Tori and Circles in Dynamical Systems , 2000 .
[10] M. van Veldhuizen. A new algorithm for the numerical approximation of an invariant curve , 1987 .
[11] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[12] A. Denjoy,et al. Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .
[13] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[14] Leon O. Chua,et al. Practical Numerical Algorithms for Chaotic Systems , 1989 .
[15] Rutherford Aris,et al. Numerical computation of invariant circles of maps , 1985 .
[16] C. Caramanis. What is ergodic theory , 1963 .
[17] W. D. Melo,et al. ONE-DIMENSIONAL DYNAMICS , 2013 .