Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing

We present an overview of negative bias temperature instability (NBTI) commonly observed in p-channel metal–oxide–semiconductor field-effect transistors when stressed with negative gate voltages at elevated temperatures. We discuss the results of such stress on device and circuit performance and review interface traps and oxide charges, their origin, present understanding, and changes due to NBTI. Next we discuss the effects of varying parameters (hydrogen, deuterium, nitrogen, nitride, water, fluorine, boron, gate material, holes, temperature, electric field, and gate length) on NBTI. We conclude with the present understanding of NBTI and its minimization.

[1]  P. V. Gray,et al.  DENSITY OF SiO2–Si INTERFACE STATES , 1966 .

[2]  A. S. Grove,et al.  Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon , 1967 .

[3]  R. J. Strain,et al.  On the Formation of Surface States during Stress Aging of Thermal Si ‐ SiO2 Interfaces , 1973 .

[4]  B. E. Deal The Current Understanding of Charges in the Thermally Oxidized Silicon Structure , 1974 .

[5]  J. Pfister,et al.  Evolution of surface-states density of Si/wet thermal SiO2 interface during bias-temperature treatment , 1977 .

[6]  K. Jeppson,et al.  Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices , 1977 .

[7]  A. K. Sinha,et al.  Kinetics of the Slow‐Trapping Instability at the Si / SiO2 Interface , 1978 .

[8]  A. Revesz The Role of Hydrogen in SiO2 Films on Silicon , 1979 .

[9]  Bruce E. Deal Standardized terminology for oxide charges associated with thermally oxidized silicon , 1980 .

[10]  E. Poindexter,et al.  Characterization of Si/SiO2 interface defects by electron spin resonance , 1983 .

[11]  Sokrates T. Pantelides,et al.  Effect of hydrogen on shallow dopants in crystalline silicon , 1987 .

[12]  M. L. Reed,et al.  Chemistry of Si‐SiO2 interface trap annealing , 1988 .

[13]  Jimmie J. Wortman,et al.  Effects of processing conditions on negative bias temperature instability in metal‐oxide‐semiconductor structures , 1988 .

[14]  Walter R. Buchwald,et al.  Generation of P[sub b] Centers by High Electric Fields: Thermochemical Effects , 1989 .

[15]  B. Meyerson,et al.  Bistable conditions for low‐temperature silicon epitaxy , 1990 .

[16]  Dennis B. Brown,et al.  Time dependence of radiation‐induced interface trap formation in metal‐oxide‐semiconductor devices as a function of oxide thickness and applied field , 1991 .

[17]  E. H. Nicollian,et al.  Mechanism of negative‐bias‐temperature instability , 1991 .

[18]  J. McVittie,et al.  Thin-oxide damage from gate charging during plasma processing , 1992, IEEE Electron Device Letters.

[19]  P. Agnello,et al.  Atmospheric pressure chemical vapor deposition of Si and SiGe at low temperatures , 1992 .

[20]  G. Lo,et al.  Effects of growth temperature on TDDB characteristics of N/sub 2/O-grown oxides , 1992, IEEE Electron Device Letters.

[21]  J. Steiger,et al.  Study of hydrogen incorporation in MOS-structures after various process steps using nuclear reaction analysis (NRA) , 1993 .

[22]  C. R. Helms,et al.  The silicon-silicon dioxide system: Its microstructure and imperfections , 1994 .

[23]  Shigeo Ogawa,et al.  Interface‐trap generation at ultrathin SiO2 (4–6 nm)‐Si interfaces during negative‐bias temperature aging , 1995 .

[24]  G. Hutcheson,et al.  Technology and Economics in the Semiconductor Industry , 1996 .

[25]  G. Kamarinos,et al.  How will physics be involved in silicon microelectronics , 1996 .

[26]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[27]  Daniel C. Kerr,et al.  Threshold voltage control in buried-channel MOSFETs , 1997 .

[28]  Dennis W. Prather,et al.  How to choose electromagnetic software , 1997 .

[29]  D.A. Hodges,et al.  Benchmarking Semiconductor Manufacturing , 1997, 27th European Solid-State Device Research Conference.

[30]  D. Fleetwood,et al.  Non-volatile memory device based on mobile protons in SiO2 thin films , 1997, Nature.

[31]  V. Afanas’ev,et al.  Electrical activity of interfacial paramagnetic defects in thermal (100) Si/SiO2 , 1998 .

[32]  W.F. Clark,et al.  Improved hot-electron reliability in high-performance, multilevel-metal CMOS using deuterated barrier-nitride processing , 1999, IEEE Electron Device Letters.

[33]  Blair R. Tuttle,et al.  Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon , 1999 .

[34]  A. Stesmans Dissociation kinetics of hydrogen-passivated Pb defects at the (111)Si/SiO2 interface , 2000 .

[35]  Andre Stesmans,et al.  Nature of the P b 1 interface defect in (100)Si/SiO 2 as revealed by electron spin resonance 29 Si hyperfine structure , 1999 .

[36]  Hiroshi Iwai,et al.  CMOS technology-year 2010 and beyond , 1999, IEEE J. Solid State Circuits.

[37]  T. Mogami,et al.  Bias temperature instability in scaled p/sup +/ polysilicon gate p-MOSFET's , 1999 .

[38]  Terence B. Hook,et al.  The combined effects of deuterium anneals and deuterated barrier-nitride processing on hot-electron degradation in MOSFET's , 1999 .

[39]  Karl Goser,et al.  Trapping mechanisms in negative bias temperature stressed p-MOSFETs , 1999 .

[40]  Car,et al.  Dangling bond defects at Si-SiO2 interfaces: atomic structure of the P(b1) center , 2000, Physical review letters.

[41]  N. Tolk,et al.  Absolute total cross sections for electron-stimulated desorption of hydrogen and deuterium from silicon(111) measured by second harmonic generation , 2000 .

[42]  C. Walle,et al.  Microscopic theory of hydrogen in silicon devices , 2000 .

[43]  W. Weber,et al.  Do Pb1 centers have levels in the Si band gap? Spin-dependent recombination study of the Pb1 “hyperfine spectrum” , 2000 .

[44]  Terence B. Hook,et al.  The effects of fluorine on parametrics and reliability in a 0.18-/spl mu/m 3.5/6.8 nm dual gate oxide CMOS technology , 2001 .

[45]  P. K. Roy,et al.  Synthesis of a new manufacturable high-quality graded gate oxide for sub-0.2 /spl mu/m technologies , 2001 .

[46]  Guido Groeseneken,et al.  Hydrogen induced positive charge generation in gate oxides , 2001 .

[47]  Yoshio Nishi,et al.  Limits of integrated-circuit manufacturing , 2001, Proc. IEEE.

[48]  Ronald D. Schrimpf,et al.  Proton-induced defect generation at the Si-SiO/sub 2/ interface , 2001 .

[49]  Chih-Wen Liu,et al.  Correlation between Si–H/D bond desorption and injected electron energy in metal–oxide–silicon tunneling diodes , 2001 .

[50]  W. W. Abadeer Reliability monitoring and screening issues with ultrathin gate dielectric devices , 2001 .

[51]  K. Cheng,et al.  A new technique to quantify deuterium passivation of interface traps in MOS devices , 2001, IEEE Electron Device Letters.

[52]  A. Haggag,et al.  The physics of determining chip reliability , 2001, IEEE Circuits and Devices Magazine.

[53]  Koji Kotani,et al.  New paradigm of silicon technology , 2001, Proc. IEEE.

[54]  Eiji Takeda,et al.  Reliability issues of silicon LSIs facing 100-nm technology node , 2002, Microelectron. Reliab..

[55]  Enhanced Negative-Bias-Temperature Instability of P-Channel Metal-Oxide-Semiconductor Transistors due to Plasma Charging Damage , 2002 .

[56]  S. Rauch The statistics of NBTI-induced V/sub T/ and /spl beta/ mismatch shifts in pMOSFETs , 2002 .

[57]  R. Ludwig,et al.  Crossroads for mixed-signal chips , 2002 .

[58]  T. P. Chen,et al.  Influence of Nitrogen Proximity from the Si/SiO2 Interface on Negative Bias Temperature Instability , 2002 .

[59]  Kiyotaka Imai,et al.  A 100 nm Node CMOS Technology for System-on-a-Chip Applications , 2002 .

[60]  Edward J. Nowak,et al.  Maintaining the benefits of CMOS scaling when scaling bogs down , 2002, IBM J. Res. Dev..

[61]  Eiichi Murakami,et al.  Effect of nitrogen at SiO2/Si interface on reliability issues—negative-bias-temperature instability and Fowler–Nordheim-stress degradation , 2002 .

[62]  Zhijian Yang,et al.  Mechanism of Threshold Voltage Shift (ΔVth) Caused by Negative Bias Temperature Instability (NBTI) in Deep Submicron pMOSFETs , 2002 .

[63]  S. Fujieda,et al.  Hydrogen redistribution induced by negative-bias-temperature stress in metal–oxide–silicon diodes , 2002 .

[64]  T. P. Chen,et al.  Relationship between interfacial nitrogen concentration and activation energies of fixed-charge trapping and interface state generation under bias-temperature stress condition , 2003 .

[65]  IEEE Spectrum , 2022 .