An analysis of electrical impedance tomography with applications to Tikhonov regularization

This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the con- ductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate ap rioriinformation of smoothness/sparsity on the inho- mogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage.

[1]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[2]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[3]  Bangti Jin,et al.  Iterative parameter choice by discrepancy principle , 2012 .

[4]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[5]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[6]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[7]  Jari P. Kaipio,et al.  Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..

[8]  Bangti Jin,et al.  A reconstruction algorithm for electrical impedance tomography based on sparsity regularization , 2012 .

[9]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[10]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .

[11]  Winfried Sickel,et al.  Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.

[12]  Kazufumi Ito,et al.  A Regularization Parameter for Nonsmooth Tikhonov Regularization , 2011, SIAM J. Sci. Comput..

[13]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[14]  Armin Iske,et al.  Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .

[15]  Wolfgang Dahmen,et al.  Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..

[16]  Daniela Rosca,et al.  A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform , 2011, IEEE Transactions on Image Processing.

[17]  Steffen Dereich,et al.  Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.

[18]  Wang-Q Lim,et al.  Image Separation Using Shearlets , 2011 .

[19]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[20]  Christian Bender,et al.  Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.

[21]  G. Teschke,et al.  Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .

[22]  Erich Novak,et al.  The Curse of Dimensionality for Monotone and Convex Functions of Many Variables , 2010, 1011.3680.

[23]  Klaus Ritter,et al.  Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains , 2010, 1011.1814.

[24]  Stephan Dahlke,et al.  Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems , 2010, Adv. Comput. Math..

[25]  E. Novak,et al.  On the power of function values for the approximation problem in various settings , 2010, 1011.3682.

[26]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[27]  Masahiro Yamamoto,et al.  The Calderón problem with partial data in two dimensions , 2010 .

[28]  Herbert Egger,et al.  Analysis and Regularization of Problems in Diffuse Optical Tomography , 2010, SIAM J. Math. Anal..

[29]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[30]  Bernd Hofmann,et al.  On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems , 2010 .

[31]  Sadegh Jokar,et al.  Sparse recovery and Kronecker products , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[32]  B. Hofmann,et al.  Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces , 2010 .

[33]  G. Teschke,et al.  Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints , 2010 .

[34]  Daniel Rudolf,et al.  Error bounds for computing the expectation by Markov chain Monte Carlo , 2009, Monte Carlo Methods Appl..

[35]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[36]  Markus Hansen,et al.  On tensor products of quasi-Banach spaces , 2010 .

[37]  J. Kaipio,et al.  Electrical Resistance Tomography Imaging of Concrete , 2010 .

[38]  Andy Adler,et al.  In Vivo Impedance Imaging With Total Variation Regularization , 2010, IEEE Transactions on Medical Imaging.

[39]  W. Hackbusch,et al.  Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .

[40]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[41]  E. Novak,et al.  Optimal Order of Convergence and (In)Tractability of Multivariate Approximation of Smooth Functions , 2009 .

[42]  K. Bredies,et al.  Regularization with non-convex separable constraints , 2009 .

[43]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[44]  Andreas Neubauer,et al.  On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces , 2009 .

[45]  G. Plonka The Easy Path Wavelet Transform: A New Adaptive Wavelet Transform for Sparse Representation of Two-Dimensional Data , 2009 .

[46]  D. Lorenz,et al.  Greedy solution of ill-posed problems: error bounds and exact inversion , 2009, 0904.0154.

[47]  G. Teschke,et al.  A compressive Landweber iteration for solving ill-posed inverse problems , 2008 .

[48]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: convergence by local injectivity , 2008 .

[49]  L. Rondi On the regularization of the inverse conductivity problem with discontinuous conductivities , 2008 .

[50]  O. Scherzer,et al.  Sparse regularization with lq penalty term , 2008, 0806.3222.

[51]  P. Maass,et al.  Minimization of Tikhonov Functionals in Banach Spaces , 2008 .

[52]  D. Lorenz,et al.  Convergence rates and source conditions for Tikhonov regularization with sparsity constraints , 2008, 0801.1774.

[53]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[54]  Giovanni Alessandrini Open issues of stability for the inverse conductivity problem , 2007 .

[55]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[56]  EquationsThierry GALLOUETandAlexis Monier,et al.  On the Regularity of Solutions to Elliptic , 2007 .

[57]  Armin Lechleiter,et al.  A regularization technique for the factorization method , 2006 .

[58]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: a numerical study , 2006 .

[59]  R H Bayford,et al.  Bioimpedance tomography (electrical impedance tomography). , 2006, Annual review of biomedical engineering.

[60]  Tal Schuster,et al.  Nonlinear iterative methods for linear ill-posed problems in Banach spaces , 2006 .

[61]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[62]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[63]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[64]  Gunther Uhlmann Commentary on Calderón’s paper 28, On an Inverse Boundary Value Problem , 2006 .

[65]  Manuchehr Soleimani,et al.  Nonlinear image reconstruction for electrical capacitance tomography using experimental data , 2005 .

[66]  E. Resmerita Regularization of ill-posed problems in Banach spaces: convergence rates , 2005 .

[67]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[68]  E. Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings I , 2006, J. Complex..

[69]  Kari Astala,et al.  Convex integration and the L p theory of elliptic equations. , 2004 .

[70]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[71]  S. Siltanen,et al.  Electrical impedance tomography and Mittag-Leffler's function , 2004 .

[72]  David Isaacson,et al.  Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography , 2004, IEEE Transactions on Medical Imaging.

[73]  W. Lionheart EIT reconstruction algorithms: pitfalls, challenges and recent developments , 2003, Physiological measurement.

[74]  Nuutti Hyvönen,et al.  Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions , 2004, SIAM J. Appl. Math..

[75]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[76]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[77]  P. Maass,et al.  Tikhonov regularization for electrical impedance tomography on unbounded domains , 2003 .

[78]  Oliver Dorn,et al.  Fréchet Derivatives for Some Bilinear Inverse Problems , 2002, SIAM J. Appl. Math..

[79]  Arto Voutilainen,et al.  Estimation of non-stationary region boundaries in EIT—state estimation approach , 2001 .

[80]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[81]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[82]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[83]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[84]  Jari P. Kaipio,et al.  Tikhonov regularization and prior information in electrical impedance tomography , 1998, IEEE Transactions on Medical Imaging.

[85]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[86]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[87]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[88]  David C. Dobson,et al.  Convergence of a reconstruction method for the inverse conductivity problem , 1992 .

[89]  L. Evans Measure theory and fine properties of functions , 1992 .

[90]  Fadil Santosa,et al.  Stability and resolution analysis of a linearized problem in electrical impedance tomography , 1991 .

[91]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[92]  Michael Vogelius,et al.  A backprojection algorithm for electrical impedance imaging , 1990 .

[93]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[94]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[95]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .

[96]  David Isaacson,et al.  Comment on Calderon's Paper: "On an Inverse Boundary Value Problem" , 1989 .

[97]  Andreas Neubauer,et al.  When do Sobolev spaces form a Hilbert scale , 1988 .

[98]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[99]  M. Neuman,et al.  Impedance computed tomography algorithm and system. , 1985, Applied optics.

[100]  C. W. Groetsch,et al.  Regularization of Ill-Posed Problems. , 1978 .

[101]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[102]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[103]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .