Broadband dual phase energy harvester: Vibration and magnetic field

Abstract Broadband mechanical energy harvesting implies stable output power over a wide range of source frequency. Here we present a cost-effective solution towards achieving broadband response by designing a magnetically coupled piezoelectric energy harvester array that exhibits a large power density of 243 μW/cm3 g2 at natural frequency and bandwidth of more than 30 Hz under 1 g acceleration. The magnetically coupled piezoelectric energy harvester array exhibits dual modes of energy harvesting, responding to both stray magnetic field as well as ambient vibrations, and is found to exhibit the output power density of 36.5 μW/cm3 Oe2 at 79.5 Hz under the ambient magnetic field while maintaining the broadband nature. The magnetically coupled piezoelectric energy harvester array was demonstrated to harvest continuous power from a rotary pump vibration, an automobile engine vibration and a parasitic magnetic field surrounding a cable of an electric kettle. These demonstrations suggest that the magnetically coupled piezoelectric energy harvester array could serve the role of a standalone power source for wireless sensor nodes and small electronic devices.

[1]  J. Rogers,et al.  Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. , 2014, Nature materials.

[2]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[3]  Bruno Ando,et al.  Analysis of two dimensional, wide-band, bistable vibration energy harvester , 2013 .

[4]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[5]  Wei Wang,et al.  Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration , 2015 .

[6]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[7]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[8]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[9]  Jin S. Heo,et al.  Structure-performance relationships for cantilever-type piezoelectric energy harvesters , 2014 .

[10]  E. Furlani Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications , 2001 .

[11]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[12]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[13]  Dong Sam Ha,et al.  A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits , 2017 .

[14]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[15]  Adam M. Wickenheiser,et al.  Design Optimization of Linear and Non-Linear Cantilevered Energy Harvesters for Broadband Vibrations , 2011 .

[16]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[17]  Shashank Priya,et al.  Dual-phase self-biased magnetoelectric energy harvester , 2013 .

[18]  Dae-Yong Jeong,et al.  Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities , 2014 .

[19]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[20]  Christofer Hierold,et al.  Optimized thermal coupling of micro thermoelectric generators for improved output performance , 2013 .

[21]  Young-Jin Kim,et al.  Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester , 2016, Scientific Reports.

[22]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[23]  Jean W. Zu,et al.  Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester , 2014 .

[24]  S. Dong,et al.  Magneto-Mechano-Electric (MME) Energy Harvesting Properties of Piezoelectric Macro-fiber Composite/Ni Magnetoelectric Generator , 2014 .

[25]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[26]  Yong-Jun Kim,et al.  A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting , 2012 .

[27]  Han Byul Kang,et al.  Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System , 2017, Scientific Reports.

[28]  Rudra Pratap,et al.  Performance Enhancement of Piezoelectric Energy Harvesters Using Multilayer and Multistep Beam Configurations , 2015, IEEE Sensors Journal.

[29]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[30]  S. Dong,et al.  Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever , 2014 .

[31]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[32]  Othman Sidek,et al.  A review of vibration-based MEMS piezoelectric energy harvesters , 2011 .

[33]  S. Shahruz Design of mechanical band-pass filters for energy scavenging , 2006 .

[34]  Dae-Yong Jeong,et al.  Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored geometry , 2016 .

[35]  Huan Xue,et al.  Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  Dae-Yong Jeong,et al.  Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density , 2017, Journal of Microelectromechanical Systems.

[37]  Sang‐Woo Kim,et al.  Energy harvesting based on semiconducting piezoelectric ZnO nanostructures , 2012 .

[38]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[39]  Chengkuo Lee,et al.  Electromagnetic energy harvesting from vibrations of multiple frequencies , 2009 .

[40]  K. Tashiro,et al.  Energy Harvesting of Magnetic Power-Line Noise , 2011, IEEE Transactions on Magnetics.

[41]  T. O'Donnell,et al.  Energy scavenging for long-term deployable wireless sensor networks. , 2008, Talanta.

[42]  Jungho Ryu,et al.  Ubiquitous magneto-mechano-electric generator , 2015 .

[43]  Robert Puers,et al.  Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters , 2008 .

[44]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[45]  J. Ryu,et al.  Low‐Loss Piezoelectric Single‐Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite , 2016 .

[46]  Edward P. Furlani,et al.  Permanent Magnet Applications , 2001 .

[47]  S. Priya,et al.  Modulated Magneto-Thermal Response of La0.85Sr0.15MnO3 and (Ni0.6Cu0.2Zn0.2)Fe2O4 Composites for Thermal Energy Harvesters , 2017 .

[48]  S. Priya,et al.  Multimodal system for harvesting magnetic and mechanical energy , 2008 .