Numerical stability of collocation schemes for time domain boundary integral equations

Time domain boundary integral formulations of transient scattering problems involve retarded potential integral equations (RPIEs). Collocation schemes for RPIEs are often unstable, having errors which oscillate and grow exponentially with time. We describe how Fourier analysis can be used to analyse the stability of uniform grid schemes and to show that the instabilities are often very different from those observed in PDE approximations. We also present a new stable collocation scheme for a scalar RPIE, and show that it converges.

[1]  Vidar Thomée,et al.  Convergence estimates for semi-discrete galerkin methods for initial-value problems , 1973 .

[2]  Bryan P. Rynne,et al.  INSTABILITIES IN TIME MARCHING METHODS FOR SCATTERING PROBLEMS , 1986 .

[3]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[4]  B. P. Rynne,et al.  Stability of Time Marching Algorithms for the Electric Field Integral Equation , 1990 .

[5]  T. Ha-Duong On boundary integral equations associated to scattering problems of transient waves , 1996 .

[6]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[7]  B. P. Rynne,et al.  Time Domain Scattering from Arbitrary Surfaces Using the Electric Field Integral Equation , 1991 .

[8]  Bryan P. Rynne,et al.  The well-posedness of the electric field integral equation for transient scattering from a perfectly conducting body , 1999 .

[9]  T. Ha-Duong,et al.  On the transient acoustic scattering by a flat object , 1990 .

[10]  Penny J. Davies,et al.  Numerical stability and convergence of approximations of retarded potential integral equations , 1994 .

[11]  Dugald B. Duncan,et al.  Averaging techniques for time-marching schemes for retarded potential integral equations , 1997 .

[12]  J. G. Jones On the numerical solution of convolution integral equations and systems of such equations , 1961 .

[13]  D. Wilton,et al.  Transient scattering by conducting surfaces of arbitrary shape , 1991 .

[14]  P. J. Davies Stability of time-marching numerical schemes for the electric field integral equation , 1994 .

[15]  Mingyu Lu,et al.  Fast Evaluation of Two-Dimensional Transient Wave Fields , 2000 .

[16]  Penny J. Davies,et al.  A stability analysis of a time marching scheme for the general surface electric field integral equation , 1998 .

[17]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[18]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[19]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[20]  D. S. Jones,et al.  Methods in electromagnetic wave propagation , 1979 .

[21]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[22]  Rolf Jeltsch,et al.  Stability of quadrature rule methods for first kind volterra integral equations , 1974 .

[23]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[24]  Ergin,et al.  Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm , 2000, The Journal of the Acoustical Society of America.