Observation of the Time-Reversal Symmetric Hall Effect in Graphene-WSe2 Heterostructures at Room Temperature.

In this Letter, we provide experimental evidence of the time-reversal symmetric Hall effect in a mesoscopic system, namely, high-mobility graphene-WSe2 heterostructures. This linear, dissipative Hall effect, whose sign depends on the sign of the charge carriers, persists up to room temperature. The magnitude and the sign of the Hall signal can be tuned using an external perpendicular electric field. Our joint experimental and theoretical study establishes that the strain induced by lattice mismatch, or alignment angle inhomogeneity, produces anisotropic bands in graphene while simultaneously breaking the inversion symmetry. The band anisotropy and reduced spatial symmetry lead to the appearance of a time-reversal symmetric Hall effect. Our study establishes graphene-transition metal dichalcogenide-based heterostructures as an excellent platform for studying the effects of broken symmetry on the physical properties of band-engineered two-dimensional systems.

[1]  Kenji Watanabe,et al.  Experimental observation of spin−split energy dispersion in high-mobility single-layer graphene/WSe2 heterostructures , 2022, npj 2D Materials and Applications.

[2]  W. Yao,et al.  Time-reversal even charge hall effect from twisted interface coupling , 2022, Nature Communications.

[3]  F. D. Juan,et al.  Charge-to-spin conversion in twisted graphene/WSe$_2$ heterostructures , 2022, 2206.09478.

[4]  Syed Hassan Abbas Jaffery,et al.  Gate modulation of the spin current in Graphene/WSe2 van der Waals Heterostructure at room temperature , 2022, Journal of Alloys and Compounds.

[5]  A. Agarwal,et al.  Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene , 2022, 2D Materials.

[6]  Kenji Watanabe,et al.  Berry curvature dipole senses topological transition in a moiré superlattice , 2022, Nature Physics.

[7]  D. Maslov,et al.  Zero-field spin resonance in graphene with proximity-induced spin-orbit coupling , 2021, Physical Review B.

[8]  A. Agarwal,et al.  Resonant Second-Harmonic Generation as a Probe of Quantum Geometry. , 2021, Physical review letters.

[9]  C. Felser,et al.  Layer Hall effect in a 2D topological axion antiferromagnet , 2021, Nature.

[10]  Kenji Watanabe,et al.  Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure , 2021, npj 2D Materials and Applications.

[11]  A. Bid,et al.  Electric-Field-Tunable Valley Zeeman Effect in Bilayer Graphene Heterostructures: Realization of the Spin-Orbit Valve Effect. , 2021, Physical review letters.

[12]  G. Guo,et al.  Riemannian geometry of resonant optical responses , 2021, Nature Physics.

[13]  C. Ortix,et al.  Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry , 2021, Nature Electronics.

[14]  T. Das,et al.  Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe2 Heterostructure. , 2020, ACS nano.

[15]  F. Casanova,et al.  Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2 , 2020, 2006.09227.

[16]  P. Vasilopoulos,et al.  Influence of interface induced valley-Zeeman and spin-orbit couplings on transport in heterostructures of graphene on WSe2 , 2020, Physical Review B.

[17]  B. V. van Wees,et al.  Charge-to-Spin Conversion by the Rashba–Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature , 2019, Nano letters.

[18]  X. Dai,et al.  Quantum Valley Hall Effect, Orbital Magnetism, and Anomalous Hall Effect in Twisted Multilayer Graphene Systems , 2019, Physical Review X.

[19]  M. Koshino,et al.  Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides , 2019, Physical Review B.

[20]  C. M. Wang,et al.  Disorder-induced nonlinear Hall effect with time-reversal symmetry , 2018, Nature Communications.

[21]  A. Ouerghi,et al.  Spin-orbit interaction induced in graphene by transition metal dichalcogenides , 2018, Physical Review B.

[22]  S. Roche,et al.  Spin transport in graphene/transition metal dichalcogenide heterostructures. , 2018, Chemical Society reviews.

[23]  C. Felser,et al.  Planar Hall effect in the Weyl semimetal GdPtBi , 2017, Physical Review B.

[24]  R. Raimondi,et al.  Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. , 2017, Physical review letters.

[25]  Kenji Watanabe,et al.  Magnetotransport in heterostructures of transition metal dichalcogenides and graphene , 2017, 1706.07189.

[26]  Stephan Roche,et al.  Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects. , 2017, Physical review letters.

[27]  S. Tewari,et al.  Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals. , 2017, Physical review letters.

[28]  S. Roche,et al.  Charge, Spin and Valley Hall Effects in Disordered Graphene , 2016, 1610.09917.

[29]  K. Novoselov,et al.  Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures , 2016, Science.

[30]  P. Vasilopoulos,et al.  Magneto-optical transport properties of monolayer WSe 2 , 2016, 1607.06917.

[31]  A. Morpurgo,et al.  Origin and magnitude of 'designer' spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides , 2016, 1606.01789.

[32]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[33]  J. Sinova,et al.  Spin Hall effects , 2015 .

[34]  J. Fabian,et al.  Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides , 2015, 1510.00166.

[35]  J. Shan,et al.  Electrical control of the valley Hall effect in bilayer MoS2 transistors. , 2015, Nature nanotechnology.

[36]  A. Morpurgo,et al.  Strong interface-induced spin–orbit interaction in graphene on WS2 , 2015, Nature Communications.

[37]  L. Fu,et al.  Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. , 2015, Physical review letters.

[38]  J. Fabian,et al.  Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics , 2015, 1506.08954.

[39]  J. Fabian,et al.  Graphene spintronics. , 2015, Nature nanotechnology.

[40]  Kenji Watanabe,et al.  Gate-tunable topological valley transport in bilayer graphene , 2015, Nature Physics.

[41]  G. Eda,et al.  Spin–orbit proximity effect in graphene , 2014, Nature Communications.

[42]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[43]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[44]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[45]  Jun Ding,et al.  Quantum anomalous Hall effect in graphene from Rashba and exchange effects , 2010, 1005.1672.

[46]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[47]  Shou-Cheng Zhang,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[48]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[49]  W. Yao,et al.  Layer-Contrasted Hall Effect in Twisted Bilayers with Time Reversal Symmetry , 2022 .

[50]  Kenji Watanabe,et al.  Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene , 2015, Nature Physics.

[51]  G. V. Chester,et al.  Solid State Physics , 2000 .