Optical I/O technology for tera-scale computing

This paper describes both a near term and a long term optical interconnect solution, the first based on a packaging architecture and the second based on a monolithic photonic CMOS architecture. The packaging-based optical I/O architecture implemented with 90 nm CMOS transceiver circuits, 1 × 12 VCSEL/detector arrays and polymer waveguides achieves 10 Gb/s/channel at 11 pJ/b. A simple TX pre-emphasis technique enables a potential 18 Gb/s at 9.6 pJ/b link efficiency. Analysis predicts this architecture to reach less than 1 pJ/b at the 16 nm CMOS technology node. A photonic CMOS process enables higher bandwidth and lower energy-per-bit for chip-to-chip optical I/O through integration of electro-optical polymer based modulators, silicon nitride waveguides and polycrystalline germanium (Ge) detectors into a CMOS logic process. Experimental results for the photonic CMOS ring resonator modulators and Ge detectors demonstrate performance above 20 Gb/s and analysis predicts that photonic CMOS will eventually enable energy efficiency better than 0.3 pJ/b with 16 nm CMOS. Optical interconnect technologies such as these using multi-lane communication or wavelength division multiplexing have the potential to achieve TB/s interconnect and enable platforms suitable for the tera-scale computing era.

[1]  H. Fetterman,et al.  Demonstration of 110 GHz electro-optic polymer modulators , 1997 .

[2]  Austin V. Harton,et al.  Spatially independent VCSEL models for the simulation of diffusive turn-off transients , 1999 .

[3]  A. Murthy,et al.  A 90 nm communication technology featuring SiGe HBT transistors, RF CMOS, precision R-L-C RF elements and 1 /spl mu/m2 6-T SRAM cell , 2002, Digest. International Electron Devices Meeting,.

[4]  H.S. Muthali,et al.  A CMOS 10-gb/s SONET transceiver , 2004, IEEE Journal of Solid-State Circuits.

[5]  M.J. Kobrinsky,et al.  Comparisons of conventional, 3-D, optical, and RF interconnects for on-chip clock distribution , 2004, IEEE Transactions on Electron Devices.

[6]  Henning Braunisch,et al.  Optical I/O technology for digital VLSI , 2004, SPIE OPTO.

[7]  Jingdong Luo,et al.  Exceptional electro-optic properties through molecular design and controlled self-assembly , 2005, SPIE Optics + Photonics.

[8]  F. Ellinger,et al.  A 100-mW 4/spl times/10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects , 2005, IEEE Journal of Solid-State Circuits.

[9]  V. Gupta,et al.  A 6.25-Gb/s binary transceiver in 0.13-/spl mu/m CMOS for serial data transmission across high loss legacy backplane channels , 2005, IEEE Journal of Solid-State Circuits.

[10]  A. Rylyakov,et al.  A low power 10 Gb/s serial link transmitter in 90-nm CMOS , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[11]  Y. Kwark,et al.  A 20 Gb/s VCSEL driver with pre-emphasis and regulated output impedance in 0.13 /spl mu/m CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[12]  S. Gowda,et al.  A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology , 2006, IEEE Journal of Solid-State Circuits.

[13]  A. Chandrakasan,et al.  18Gb/s Optical IO: VCSEL Driver and TIA in 90nm CMOS , 2007, 2007 IEEE Symposium on VLSI Circuits.

[14]  Dan Song,et al.  A Fully Integrated 4 $\times$ 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 $\mu{\hbox {m}}$ CMOS SOI Technology , 2006, IEEE Journal of Solid-State Circuits.

[15]  Michal Lipson,et al.  Polysilicon photonic resonators for large-scale 3D integration of optical networks. , 2007, Optics express.

[16]  T. Anan,et al.  High-speed 1.1-μm-range InGaAs VCSELs , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[17]  Jeremy Witzens,et al.  A 40-Gb/s QSFP Optoelectronic Transceiver in a 0.13μm CMOS Silicon-on-Insulator Technology , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[18]  Alexander V. Rylyakov,et al.  A ≪5mW/Gb/s/link, 16×10Gb/s Bi-Directional Single-Chip CMOS Optical Transceiver for Board-Level Optical Interconnects , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[19]  Jingdong Luo,et al.  Electro-optic polymer cladding ring resonator modulators. , 2008, Optics express.

[20]  N. Kurd,et al.  Next generation Intel® micro-architecture (Nehalem) clocking architecture , 2008, 2008 IEEE Symposium on VLSI Circuits.

[21]  Christopher Batten,et al.  Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics , 2008, 2008 16th IEEE Symposium on High Performance Interconnects.

[22]  M.R. Reshotko,et al.  Waveguide coupled Ge-on-oxide photodetectors for integrated optical links , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[23]  Samuel Palermo,et al.  Optical hybrid package with an 8-channel 18GT/s CMOS transceiver for chip-to-chip optical interconnect , 2008, SPIE OPTO.

[24]  Sunao Torii,et al.  On-Chip Optical Interconnect , 2009, Proceedings of the IEEE.

[25]  J.E. Jaussi,et al.  Modeling and Analysis of High-Speed I/O Links , 2009, IEEE Transactions on Advanced Packaging.