Excellent combination of mechanical properties and electrical conductivity obtained by minute addition of alloying elements and nanometer scaled Al2O3 in copper alloy

[1]  Xiao-song Jiang,et al.  Research Progress in Interfacial Characteristics and Strengthening Mechanisms of Rare Earth Metal Oxide-Reinforced Copper Matrix Composites , 2022, Materials.

[2]  Xianghao Meng,et al.  The Precipitation Behavior of a Cu-Ni-Si Alloy with Cr Addition Prepared by Heating-Cooling Combined Mold (HCCM) Continuous Casting , 2022, Materials.

[3]  Xin-hua Liu,et al.  Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Plate Produced by HCCM Horizontal Continuous Casting , 2021, Journal of Alloys and Compounds.

[4]  Quan Shan,et al.  Microstructure evolution and dislocation strengthening mechanism of Cu–Ni–Co–Si alloy , 2021, Materials Science and Engineering: A.

[5]  Chao Yang,et al.  Enhanced tensile properties in a Cu-Al2O3 alloy via trace Ti addition , 2021 .

[6]  M. Goto,et al.  Simultaneous increase in electrical conductivity and fatigue strength of Cu-Ni-Si alloy by utilizing discontinuous precipitates , 2021 .

[7]  Haifeng Zhang,et al.  Effects of ball milling on powder particle boundaries and properties of ODS copper , 2021, High Temperature Materials and Processes.

[8]  Tongmin Wang,et al.  Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu–Cr–Ni–Si alloy for lead frames applications , 2020 .

[9]  Youtong Fang,et al.  High strength and high conductivity Cu alloys: A review , 2020, Science China Technological Sciences.

[10]  T. Karkoszka,et al.  The Influence of Ag on the Microstructure and Properties of Cu-Ni-Si Alloys , 2020, Materials.

[11]  Ji Zhou,et al.  Scattering Cancellation by a Monolayer Cloak in Oxide Dispersion‐Strengthened Alloys , 2020, Advanced Functional Materials.

[12]  A. Volinsky,et al.  Effects of Cr addition on the constitutive equation and precipitated phases of copper alloy during hot deformation , 2020 .

[13]  Jiang Li,et al.  Microstructure evolution and properties of a quaternary Cu–Ni–Co–Si alloy with high strength and conductivity , 2019, Materials Science and Engineering: A.

[14]  A. Volinsky,et al.  Co effects on Cu-Ni-Si alloys microstructure and physical properties , 2019, Journal of Alloys and Compounds.

[15]  Jun Sun,et al.  Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy , 2018, Materials Science and Engineering: A.

[16]  Q. Lei,et al.  Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy , 2017 .

[17]  Huijun Kang,et al.  Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys , 2016 .

[18]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[19]  C. Watanabe,et al.  Effects of Small Addition of Ti on Strength and Microstructure of a Cu-Ni-Si Alloy , 2015, Metallurgical and Materials Transactions A.

[20]  B. Shen,et al.  Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging , 2014 .

[21]  E. Lavernia,et al.  Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu-Zn-Al Alloy Processed Via Cryomilling and Spark Plasma Sintering , 2013 .

[22]  B. Xiong,et al.  Microstructure and properties of Cu–Ni–Si–Zr alloy after thermomechanical treatments , 2013, Rare Metals.

[23]  A. Jha,et al.  Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy , 2013, Journal of Materials Engineering and Performance.

[24]  Sung-Hwan Lim,et al.  Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys , 2013, Metals and Materials International.

[25]  Ping Liu,et al.  Effect of Aging Precipitation on Properties of Cu-Ni-Si-Mg Alloy , 2011 .

[26]  D. Božić,et al.  Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites , 2010 .

[27]  N. Tsuji,et al.  Ultrafine grained copper alloy sheets having both high strength and high electric conductivity , 2009 .

[28]  C. Watanabe,et al.  Microstructure and mechanical properties of Cu–Ni–Si alloys , 2008 .

[29]  Z. Zhang,et al.  Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites , 2008 .

[30]  T. Langdon,et al.  Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys , 2008 .

[31]  G. Krállics,et al.  Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation , 2006 .

[32]  Ping Liu,et al.  Optimization of aging treatment in lead frame copper alloy by intelligent technique , 2005 .

[33]  Y. Estrin,et al.  Microstructure of severely deformed metals determined by X-ray peak profile analysis , 2004 .

[34]  T. Furuhara,et al.  Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation , 2001 .

[35]  Z. Yong,et al.  Effect of SiC particles on ageing behaviour of SiCp/7075 composites , 1997 .

[36]  H. Aaronson,et al.  Sequences of precipitate nucleation , 1975 .

[37]  J. Cahn Nucleation on dislocations , 1957 .

[38]  K. Toman The structure of Ni2Si , 1952 .

[39]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[40]  E. Nembach,et al.  Hardening Mechanisms in the Nimonic Alloy PE16 , 1985 .

[41]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .