Linearized alternating direction method of multipliers for sparse group and fused LASSO models
暂无分享,去创建一个
Xiaoming Yuan | Xinxin Li | Jianzhong Zhang | Lili Mo | Xiaoming Yuan | Xinxin Li | X. Yuan | Lili Mo | Jianzhong Zhang
[1] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[2] Xiangfeng Wang,et al. The Linearized Alternating Direction Method of Multipliers for Dantzig Selector , 2012, SIAM J. Sci. Comput..
[3] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[4] Yonina C. Eldar,et al. Collaborative hierarchical sparse modeling , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).
[5] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[6] Noah Simon,et al. A Sparse-Group Lasso , 2013 .
[7] K. Lange,et al. Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.
[8] U. Alon,et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[9] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[10] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[11] Holger Hoefling. A Path Algorithm for the Fused Lasso Signal Approximator , 2009, 0910.0526.
[12] Emmanuel Barillot,et al. Classification of arrayCGH data using fused SVM , 2008, ISMB.
[13] Jieping Ye,et al. Multi-Task Feature Learning Via Efficient l2, 1-Norm Minimization , 2009, UAI.
[14] Stanley Osher,et al. A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..
[15] Bertrand Thirion,et al. Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity , 2011, 2011 International Workshop on Pattern Recognition in NeuroImaging.
[16] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[17] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[18] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[19] Mark W. Schmidt,et al. Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials , 2010, AISTATS.
[20] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[21] J. Mesirov,et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.
[22] Shuiwang Ji,et al. SLEP: Sparse Learning with Efficient Projections , 2011 .
[23] A. Rinaldo. Properties and refinements of the fused lasso , 2008, 0805.0234.
[24] Bertrand Thirion,et al. Multiscale Mining of fMRI Data with Hierarchical Structured Sparsity , 2012, SIAM J. Imaging Sci..
[25] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[26] Volkan Cevher,et al. Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.
[27] M. Hestenes. Multiplier and gradient methods , 1969 .
[28] Amr Ahmed,et al. Recovering time-varying networks of dependencies in social and biological studies , 2009, Proceedings of the National Academy of Sciences.
[29] Jean-Philippe Vert,et al. Group lasso with overlap and graph lasso , 2009, ICML '09.
[30] Jieping Ye,et al. An efficient algorithm for a class of fused lasso problems , 2010, KDD.
[31] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[32] Jieping Ye,et al. Moreau-Yosida Regularization for Grouped Tree Structure Learning , 2010, NIPS.
[33] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[34] M. Drton,et al. Exact block-wise optimization in group lasso and sparse group lasso for linear regression , 2010, 1010.3320.
[35] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[36] Junfeng Yang,et al. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization , 2012, Math. Comput..
[37] Eric P. Xing,et al. Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity , 2009, ICML.
[38] Stephen J. Wright,et al. Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..
[39] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[40] Chris H. Q. Ding,et al. R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.
[41] Michael R. Lyu,et al. Online learning for collaborative filtering , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).
[42] Yonina C. Eldar,et al. C-HiLasso: A Collaborative Hierarchical Sparse Modeling Framework , 2010, IEEE Transactions on Signal Processing.
[43] P. Zhao,et al. The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.
[44] R. Tibshirani,et al. Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.
[45] R. L. Thorndike. Who belongs in the family? , 1953 .
[46] Robert Tibshirani,et al. Estimating the number of clusters in a data set via the gap statistic , 2000 .
[47] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[48] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[49] Julien Mairal,et al. Proximal Methods for Hierarchical Sparse Coding , 2010, J. Mach. Learn. Res..
[50] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[51] Massimiliano Pontil,et al. Multi-Task Feature Learning , 2006, NIPS.
[52] Stephen P. Boyd,et al. An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.
[53] Junzhou Huang,et al. Learning with structured sparsity , 2009, ICML '09.
[54] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[55] Meta M. Voelker,et al. Variable Selection and Model Building via Likelihood Basis Pursuit , 2004 .
[56] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .