A new method for inducing a set of interpretable fuzzy partitions and fuzzy inference systems from data
暂无分享,去创建一个
[1] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[2] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[3] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[4] Joos Vandewalle,et al. Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm , 2000, IEEE Trans. Fuzzy Syst..
[5] H. Ishibuchi,et al. Empirical study on learning in fuzzy systems by rice taste analysis , 1994 .
[6] Francisco Herrera,et al. A proposal for improving the accuracy of linguistic modeling , 2000, IEEE Trans. Fuzzy Syst..
[7] Serge Guillaume,et al. Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..
[8] José Valente de Oliveira,et al. Semantic constraints for membership function optimization , 1999, IEEE Trans. Syst. Man Cybern. Part A.
[9] W. Pedrycz. Why triangular membership functions , 1994 .
[10] J. C. Dunn,et al. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .
[11] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[12] Brigitte Charnomordic,et al. Knowledge discovery for control purposes in food industry databases , 2001, Fuzzy Sets Syst..
[13] Hisao Ishibuchi,et al. A simple but powerful heuristic method for generating fuzzy rules from numerical data , 1997, Fuzzy Sets Syst..