Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete

Abstract A theoretical model is proposed for the description of the static and fatigue behaviour of plain concrete under uni- and triaxial loading. The model is based on damage mechanics: it features two second-order symmetric damage tensors, representative of surface damage induced by tensile or compressive strains, and a scalar variable representative of volumetric damage. Assuming independence of tensile and compressive damage variables also allows accounting for crack-closure effects. A thermodynamically consistent damage evolution law is proposed. Permanent strains upon unloading are related to damage through empirical equations. The model can cover cyclic loading inducing fatigue by means of a simple extension requiring only one additional parameter to be determined. A possible strategy for the identification of the model parameters from experiments is outlined. The reliability of the model is assessed through comparison with results of static and cyclic tests.

[1]  E. Papa,et al.  A damage model for concrete subjected to fatigue loading , 1993 .

[2]  Koichi Hashiguchi,et al.  Mechanical requirements and structures of cyclic plasticity models , 1993 .

[3]  George Z. Voyiadjis,et al.  Plasticity model for concrete using the bounding surface concept , 1994 .

[4]  Howard L. Schreyer,et al.  A thermodynamically consistent framework for theories of elastoplasticity coupled with damage , 1994 .

[5]  Michael N. Fardis,et al.  Monotonic and Cyclic Constitutive Law for Concrete , 1983 .

[6]  Leonard R. Herrmann,et al.  A Bounding Surface Plasticity Model for Concrete , 1985 .

[7]  L. Resende,et al.  A damage mechanics constitutive theory for the inelastic behaviour of concrete , 1987 .

[8]  Chengsheng Ouyang,et al.  Damage model for cyclic loading of concrete , 1990 .

[9]  Faouzi Ghrib,et al.  Nonlinear Behavior of Concrete Dams Using Damage Mechanics , 1995 .

[10]  Surendra P. Shah,et al.  Fracture of Concrete Subjected to Cyclic and Sustained Loading , 1970 .

[11]  H. Schreyer,et al.  Combined Plasticity and Damage Mechanics Model for Plain Concrete , 1990 .

[12]  Helmut Weigler,et al.  Untersuchungen über das Bruch- und Verformungsverhalten von Beton bei zweiachsiger Beanspruchung , 1963 .

[13]  E. Papa,et al.  A test rig for the application of biaxial cyclic loads to structural models , 1995 .

[14]  Oral Büyüköztürk,et al.  Concrete in Biaxial Cyclic Compression , 1984 .

[15]  Michael N. Fardis,et al.  A cyclic multiaxial model for concrete , 1986, Computational Mechanics.

[16]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[17]  P. R. Sparks,et al.  The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression , 1973 .

[18]  Dusan Krajcinovic,et al.  Constitutive Equations for Damaging Materials , 1983 .

[19]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[20]  T. Hsu Fatigue of Plain Concrete , 1981 .

[21]  Kurt H. Gerstle,et al.  SIMPLE FORMULATION OF TRIAXIAL CONCRETE BEHAVIOUR , 1981 .

[22]  J. Mazars,et al.  The unilateral behaviour of damaged concrete , 1990 .

[23]  S. Ramtani,et al.  Contribution à la modélisation du comportement multiaxial du béton endommage avec description du caractère unilatéral , 1990 .

[24]  E Papa,et al.  A damage model for triaxial fatigue of concrete: theoretical formulation and parametric investigation , 1993 .

[25]  J. B. Martin,et al.  A progressive damage «continuum» model for granular materials , 1984 .