The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry

We have obtained sensitive dust continuum polarization observations at 850 μm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B-fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μG, respectively. These cores show distinct mean B-field orientations. The B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B-field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.

Lei Zhu | A. Scaife | P. Koch | A. Whitworth | N. Peretto | G. Fuller | H. Chen | T. Onaka | M. Tamura | Sang-Sung Lee | D. Byun | C. Hull | D. Johnstone | P. Bastien | S. Viti | Jongsoo Kim | G. Savini | B. Matthews | Di Li | P. Friberg | M. Seta | J. Kwon | T. Nagata | Tsuyoshi Inoue | W. Chen | K. Kawabata | S. Eyres | J. Rawlings | S. Falle | M. Griffin | J. Greaves | G. Moriarty-Schieven | T. Hasegawa | D. Ward-Thompson | L. Fissel | J. Hatchell | A. Chrysostomou | J. Fiege | R. Friesen | S. Graves | M. Houde | J. Kirk | J. Richer | P. Andr'e | K. Lacaille | C. Dowell | A. Kataoka | R. Rao | M. Rawlings | H. Parsons | Jia‐Wei Wang | L. Qian | K. Qiu | T. Ching | Y. Duan | Jinghua Yuan | D. Eden | A. Rigby | Jianjun Zhou | Xindi Tang | Da-lei Li | G. Park | Miju Kang | Il-Gyo Jeong | H. Nakanishi | Kee-Tae Kim | Hongchi Wang | Zhiwei Chen | Tie Liu | Ji-hyun Kang | S. Inutsuka | F. Kemper | Minho Choi | Sung-ju Kang | Jungyeon Cho | H. Yoo | D. Berry | T. Pyo | F. Nakamura | S. Loo | V. Konyves | D. Arzoumanian | M. Tahani | Guoyin Zhang | Junhao Liu | Xing Lu | Y. Doi | J. Robitaille | Chuan-Peng Zhang | Hua-b. Li | Sheng-Yuan Liu | T. Bourke | S. Lai | F. Kirchschlager | I. D. Looze | A. Soam | C. Lee | Ya-Wen Tang | Gwanjeong Kim | S. Mairs | K. Pattle | W. Kwon | E. Chung | H. Duan | P. Diep | S. Hayashi | M. Matsumura | Yapeng Zhang | S. Sadavoy | K. Tomisaka | Y. Tsukamoto | Hsi-Wei Yen | N. Ohashi | K. Iwasaki | Y. Shimajiri | Chin-Fei Lee | H. Shinnaga | L. Fanciullo | Jinjin Xie | T. Gledhill | Mi-Ryang Kim | R. Furuya | S. Coud'e | C. Eswaraiah | K. Kim | A. Lyo | B. Retter | Mike Chen | I. Han | L. Tram | Thiem C. Hoang | C. Law | Hyeong-Sik Yun | T. Zenko | Masato I. N. Kobayashi | S. Dai | E. Franzmann | Hong-Li Liu | Q. Gu | H. Saito | J. Hwang | T. Kusune | Yong-Hee Lee | N. B. Ngoc | Yunhee Choi | T. Inoue | S. Lai | Hongli Liu | N. Ngoc | Chuan-peng Zhang | W. Chen | H. Yun | Ya-wen Tang | Jinjin Xie | Takayoshi Kusune | Geumsook Park | Xing Lu

[1]  M. Tamura,et al.  JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud , 2020, 2011.09765.

[2]  P. Koch,et al.  The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps , 2020, The Astrophysical Journal.

[3]  S. Reissl,et al.  Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South , 2020, Nature Astronomy.

[4]  Lei Zhu,et al.  The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333 , 2020, The Astrophysical Journal.

[5]  A. Kawamura,et al.  FRagmentation and Evolution of Dense Cores Judged by ALMA (FREJA). I. Overview: Inner ∼1000 au Structures of Prestellar/Protostellar Cores in Taurus , 2020, The Astrophysical Journal.

[6]  G. Fuller,et al.  Rotation of Two Micron All Sky Survey Clumps in Molecular Clouds , 2020, The Astrophysical Journal.

[7]  J. Wurster,et al.  Non-ideal magnetohydrodynamics versus turbulence – I. Which is the dominant process in protostellar disc formation? , 2020, 2005.05345.

[8]  Qizhou Zhang,et al.  Magnetic Fields in the Early Stages of Massive Star Formation as Revealed by ALMA , 2020, The Astrophysical Journal.

[9]  C. McKee,et al.  Editorial: The Role of Magnetic Fields in the Formation of Stars , 2020, Frontiers in Astronomy and Space Sciences.

[10]  Qizhou Zhang,et al.  ALMA Observations Reveal No Preferred Outflow-filament and Outflow-magnetic Field Orientations in Protoclusters , 2019, The Astrophysical Journal.

[11]  Manash R. Samal,et al.  Unveiling the Importance of Magnetic Fields in the Evolution of Dense Clumps Formed at the Waist of Bipolar H ii Regions: A Case Study of Sh 2-201 with JCMT SCUBA-2/POL-2 , 2019, The Astrophysical Journal.

[12]  P. Koch,et al.  Multiwavelength Polarimetry of the Filamentary Cloud IC 5146. II. Magnetic Field Structures , 2019, The Astrophysical Journal.

[13]  T. Onaka,et al.  JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model , 2019, The Astrophysical Journal.

[14]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region , 2019, The Astrophysical Journal.

[15]  Qizhou Zhang,et al.  Interferometric Observations of Magnetic Fields in Forming Stars , 2019, Front. Astron. Space Sci..

[16]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field in the Starless Core ρ Ophiuchus C , 2019, The Astrophysical Journal.

[17]  E. Pascale,et al.  JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146 , 2018, The Astrophysical Journal.

[18]  P. Andre',et al.  Probing accretion of ambient cloud material into the Taurus B211/B213 filament , 2018, Astronomy & Astrophysics.

[19]  M. Saito,et al.  Possible Counterrotation between the Disk and Protostellar Envelope around the Class I Protostar IRAS 04169+2702 , 2018, The Astrophysical Journal.

[20]  H. Liu,et al.  Interactions Between Gas Dynamics and Magnetic Fields in the Massive Dense Cores of the DR21 Filament , 2018, The Astrophysical Journal.

[21]  Per Friberg,et al.  Characterizing and reducing the POL-2 instrumental polarization , 2018, Astronomical Telescopes + Instrumentation.

[22]  J. Pineda,et al.  Kinematics of dense gas in the L1495 filament , 2018, Astronomy & Astrophysics.

[23]  Tetsuo Hasegawa,et al.  First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey , 2018, The Astrophysical Journal.

[24]  Lei Zhu,et al.  Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements , 2018, The Astrophysical Journal.

[25]  Lei Zhu,et al.  A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.

[26]  J. Pineda,et al.  Subsonic islands within a high-mass star-forming infrared dark cloud , 2018, 1802.07043.

[27]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[28]  Martin Houde,et al.  ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1 , 2017, 1707.03827.

[29]  P. Ade,et al.  Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA , 2017, 1706.08407.

[30]  A. Goodman,et al.  Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation , 2017, 1706.03806.

[31]  Juan D. Soler,et al.  What are we learning from the relative orientation between density structures and the magnetic field in molecular clouds , 2017, 1705.00477.

[32]  Saeko S. Hayashi,et al.  First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt , 2017, 1704.08552.

[33]  H. Liu,et al.  Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament , 2017, 1703.02566.

[34]  V. Springel,et al.  Moving-mesh Simulations of Star-forming Cores in Magneto-gravo-turbulence , 2017, 1702.06133.

[35]  Silvia De Francesco,et al.  The JCMT Gould Belt Survey: A First Look at IC 5146 , 2017, 1701.04898.

[36]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[37]  P. Hennebelle,et al.  Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization , 2016, 1605.09371.

[38]  N. Peretto,et al.  A census of dense cores in the Taurus L1495 cloud from the Herschel Gould Belt Survey , 2016, 1602.03143.

[39]  A. Ginsburg,et al.  Molecular gas kinematics within the central 250 pc of the Milky Way , 2016, 1601.03732.

[40]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[41]  R. B. Barreiro,et al.  Planck intermediate results: XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps , 2014, 1411.2271.

[42]  M. Tafalla,et al.  Chains of dense cores in the Taurus L1495/B213 complex , 2014, 1412.1083.

[43]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[44]  M. Wright,et al.  TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS , 2013, 1310.6653.

[45]  N. Peretto,et al.  Reconstructing the density and temperature structure of prestellar cores from Herschel data: A case study for B68 and L1689B , 2013, 1311.5086.

[46]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[47]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[48]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[49]  N. Peretto,et al.  Herschel view of the Taurus B211/3 filament and striations: evidence of filamentary growth? , 2012, 1211.6360.

[50]  D. Astronomy,et al.  Radiation-magnetohydrodynamic simulations of H ii regions and their associated PDRs in turbulent molecular clouds , 2011, 1101.5510.

[51]  R. Bachiller,et al.  A molecular survey of outflow gas: velocity-dependent shock chemistry and the peculiar composition of the EHV gas , 2010, 1007.4549.

[52]  The JCMT Legacy Survey of the Gould Belt: a first look at Taurus with HARP , 2010, 1002.2020.

[53]  F. O. Alves,et al.  Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field , 2008, 0806.1189.

[54]  A. Chrysostomou,et al.  Magnetic fields in massive star-forming regions , 2007, 0709.0256.

[55]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[56]  Ramprasad Rao,et al.  Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.

[57]  D. Chuss,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006, astro-ph/0602455.

[58]  K. Tassis,et al.  Observational Constraints on the Ages of Molecular Clouds and the Star Formation Timescale: Ambipolar-Diffusion-controlled or Turbulence-induced Star Formation? , 2005, astro-ph/0512043.

[59]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[60]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[61]  L. Hartmann Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus , 2002, astro-ph/0207216.

[62]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[63]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[64]  C. Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 1999, astro-ph/9910303.

[65]  L. Hartmann,et al.  Turbulent Flow-driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem? , 1999, astro-ph/9907053.

[66]  J. Scalo,et al.  Clouds as Turbulent Density Fluctuations: Implications for Pressure Confinement and Spectral Line Data Interpretation , 1998, astro-ph/9806059.

[67]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[68]  M. Tamura,et al.  Rotation in the Protostellar Envelopes around IRAS 04169+2702 and IRAS 04365+2535: The Size Scale for Dynamical Collapse , 1997 .

[69]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[70]  M. Hayashi,et al.  Molecular cloud condensation as a tracer of low-mass star formation , 1994, Nature.

[71]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[72]  T. Mouschovias,et al.  Ambipolar diffusion and star formation : formation and contraction of axisymmetric cloud cores. II: Results , 1993 .

[73]  L. Hartmann,et al.  The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions , 1993 .

[74]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[75]  T. Mouschovias,et al.  Ambipolar diffusion and star formation: Formation and contraction of axisymmetric cloud cores. I. Formulation of the problem and method of solution , 1992 .

[76]  A. Goodman,et al.  The structure of magnetic fields in dark clouds: Infrared polarimetry in B216-217 , 1992 .

[77]  T. Mouschovias Magnetic braking, ambipolar diffusion, cloud cores, and star formation: Natural length scales and protostellar masses , 1991 .

[78]  Alyssa A. Goodman,et al.  Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .

[79]  L. Hartmann,et al.  An IRAS Survey of the Taurus-Auriga Molecular Cloud , 1990 .

[80]  F. Schloerb,et al.  The magnetic evolution of the Taurus molecular clouds. I - Large-scale properties , 1987 .

[81]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[82]  J. Elias A study of the Taurus dark cloud complex , 1978 .

[83]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[84]  L. Spitzer,et al.  Star formation in magnetic dust clouds , 1956 .

[85]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .