Influence of constitutive model in springback prediction using the split-ring test

Abstract The aim of this paper is to compare several plastic yield criteria to show their relevance on the prediction of springback behavior for a AA5754-0 aluminum alloy. An experimental test similar to the Demeri Benchmark Test [Demeri MY, Lou M, Saran MJ. A benchmark test for springback simulation in sheet metal forming. In: Society of Automotive Engineers, Inc., vol. 01-2657, 2000] has been developed. This test consists in cutting a ring specimen from a full drawn cup, the ring being then split longitudinally along a radial plan. The difference between the ring diameters, before and after splitting, gives a direct measure of the springback phenomenon, and indirectly, of the amount of residual stresses in the cup. The whole deep drawing process of a semi-blank and numerical splitting of the ring are performed using the finite element code Abaqus. Several material models are analyzed, all considering isotropic and kinematic hardening combined with one of the following plasticity criteria: von Mises, Hill’48 and Barlat’91. This last yield criterion has been implemented in Abaqus. Main observed data are force–displacement curves during forming, cup thickness according to material orientations and ring gap after splitting. The stress distributions in the cup, at the end of the drawing stage, and in the ring, after springback, are analyzed and some explanations concerning their influence on springback mechanisms are given.

[1]  K. Chung,et al.  Finite element simulation of sheet metal forming for planar anisotropic metals , 1992 .

[2]  Sandrine Thuillier,et al.  Comparison of the work-hardening of metallic sheets using tensile and shear strain paths , 2009 .

[3]  M. Finn,et al.  Numerical prediction of the limiting draw ratio for aluminum alloy sheet , 2000 .

[4]  Tore Børvik,et al.  Evaluation of identification methods for YLD2004-18p , 2008 .

[5]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[6]  T. Foecke,et al.  Robustness of the sheet metal springback cup test , 2006 .

[7]  Mahmoud Y. Demeri,et al.  A Benchmark Test for Springback Simulation in Sheet Metal Forming , 2000 .

[8]  Luís Menezes,et al.  Study on the influence of work-hardening modeling in springback prediction , 2007 .

[9]  Klaus Pöhlandt,et al.  Formability of Metallic Materials , 2000 .

[10]  A. G. Ulsoy,et al.  Development of process control in sheet metal forming , 2002 .

[11]  Farid Abed-Meraim,et al.  Investigation of advanced strain-path dependent material models for sheet metal forming simulations , 2007 .

[12]  P. Manach,et al.  Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms , 2008 .

[13]  Z. Cedric Xia,et al.  Experimental and Numerical Investigations of a Split-Ring Test for Springback , 2007 .

[14]  O. Bruhns,et al.  On objective corotational rates and their defining spin tensors , 1998 .

[15]  Frédéric Barlat,et al.  Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions , 1989 .

[16]  Jean-Philippe Ponthot,et al.  Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes , 2002 .

[17]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[18]  Jacques Besson,et al.  A yield function for anisotropic materials Application to aluminum alloys , 2004 .

[19]  R. E. Dick,et al.  Plane stress yield functions for aluminum alloy sheets , 2002 .

[20]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[21]  Stephen W. Banovic,et al.  Experimental observations of evolving yield loci in biaxially strained AA5754-O , 2008 .

[22]  Filipe Teixeira-Dias,et al.  On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models , 2007 .

[23]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[24]  P. Y. Manach,et al.  Elastoviscohysteresis constitutive law in convected coordinate frames: application to finite deformation shear tests , 2002 .

[25]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[26]  Jun Bao,et al.  Effect of the material-hardening mode on the springback simulation accuracy of V-free bending , 2002 .

[27]  R. H. Wagoner,et al.  Role of plastic anisotropy and its evolution on springback , 2002 .

[28]  Luís Menezes,et al.  Experimental and numerical study of reverse re-drawing of anisotropic sheet metals , 2002 .

[29]  Han-Chin Wu,et al.  Anisotropic plasticity for sheet metals using the concept of combined isotropic-kinematic hardening , 2002 .

[30]  H. Laurent,et al.  Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model , 2007 .

[31]  H. Laurent,et al.  Asynchronous interface between a finite element commercial software ABAQUS and an academic research code HEREZH++ , 2008, Adv. Eng. Softw..

[32]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[33]  Sandrine Thuillier,et al.  Mechanical behavior of a metastable austenitic stainless steel under simple and complex loading paths , 2007 .

[34]  Frédéric Barlat,et al.  An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals , 2008 .

[35]  E. F. Rauch,et al.  Flow localization induced by a change in strain path in mild steel , 1989 .

[36]  Frédéric Barlat,et al.  Strain rate sensitivity of the commercial aluminum alloy AA5182-O , 2005 .

[37]  R. M. Natal Jorge,et al.  Sheet metal forming simulation using EAS solid-shell finite elements , 2006 .

[38]  Craig Miller,et al.  Springback Behavior of AA6111‐T4 with Split‐Ring Test , 2004 .

[39]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  F. Barlat,et al.  Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .

[41]  Laurent Adam,et al.  Thermomechanical modeling of metals at finite strains: First and mixed order finite elements , 2005 .