Influence of constitutive model in springback prediction using the split-ring test
暂无分享,去创建一个
Sandrine Thuillier | P. Y. Manach | H. Laurent | R. Greze | P. Manach | S. Thuillier | H. Laurent | R. Grèze
[1] K. Chung,et al. Finite element simulation of sheet metal forming for planar anisotropic metals , 1992 .
[2] Sandrine Thuillier,et al. Comparison of the work-hardening of metallic sheets using tensile and shear strain paths , 2009 .
[3] M. Finn,et al. Numerical prediction of the limiting draw ratio for aluminum alloy sheet , 2000 .
[4] Tore Børvik,et al. Evaluation of identification methods for YLD2004-18p , 2008 .
[5] F. Barlat,et al. Yield function development for aluminum alloy sheets , 1997 .
[6] T. Foecke,et al. Robustness of the sheet metal springback cup test , 2006 .
[7] Mahmoud Y. Demeri,et al. A Benchmark Test for Springback Simulation in Sheet Metal Forming , 2000 .
[8] Luís Menezes,et al. Study on the influence of work-hardening modeling in springback prediction , 2007 .
[9] Klaus Pöhlandt,et al. Formability of Metallic Materials , 2000 .
[10] A. G. Ulsoy,et al. Development of process control in sheet metal forming , 2002 .
[11] Farid Abed-Meraim,et al. Investigation of advanced strain-path dependent material models for sheet metal forming simulations , 2007 .
[12] P. Manach,et al. Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms , 2008 .
[13] Z. Cedric Xia,et al. Experimental and Numerical Investigations of a Split-Ring Test for Springback , 2007 .
[14] O. Bruhns,et al. On objective corotational rates and their defining spin tensors , 1998 .
[15] Frédéric Barlat,et al. Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions , 1989 .
[16] Jean-Philippe Ponthot,et al. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes , 2002 .
[17] A. P. Karafillis,et al. A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .
[18] Jacques Besson,et al. A yield function for anisotropic materials Application to aluminum alloys , 2004 .
[19] R. E. Dick,et al. Plane stress yield functions for aluminum alloy sheets , 2002 .
[20] F. Barlat,et al. A six-component yield function for anisotropic materials , 1991 .
[21] Stephen W. Banovic,et al. Experimental observations of evolving yield loci in biaxially strained AA5754-O , 2008 .
[22] Filipe Teixeira-Dias,et al. On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models , 2007 .
[23] W. Hosford. A Generalized Isotropic Yield Criterion , 1972 .
[24] P. Y. Manach,et al. Elastoviscohysteresis constitutive law in convected coordinate frames: application to finite deformation shear tests , 2002 .
[25] C. O. Frederick,et al. A mathematical representation of the multiaxial Bauschinger effect , 2007 .
[26] Jun Bao,et al. Effect of the material-hardening mode on the springback simulation accuracy of V-free bending , 2002 .
[27] R. H. Wagoner,et al. Role of plastic anisotropy and its evolution on springback , 2002 .
[28] Luís Menezes,et al. Experimental and numerical study of reverse re-drawing of anisotropic sheet metals , 2002 .
[29] Han-Chin Wu,et al. Anisotropic plasticity for sheet metals using the concept of combined isotropic-kinematic hardening , 2002 .
[30] H. Laurent,et al. Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model , 2007 .
[31] H. Laurent,et al. Asynchronous interface between a finite element commercial software ABAQUS and an academic research code HEREZH++ , 2008, Adv. Eng. Softw..
[32] J. C. Simo,et al. Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .
[33] Sandrine Thuillier,et al. Mechanical behavior of a metastable austenitic stainless steel under simple and complex loading paths , 2007 .
[34] Frédéric Barlat,et al. An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals , 2008 .
[35] E. F. Rauch,et al. Flow localization induced by a change in strain path in mild steel , 1989 .
[36] Frédéric Barlat,et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O , 2005 .
[37] R. M. Natal Jorge,et al. Sheet metal forming simulation using EAS solid-shell finite elements , 2006 .
[38] Craig Miller,et al. Springback Behavior of AA6111‐T4 with Split‐Ring Test , 2004 .
[39] R. Hill. A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[40] F. Barlat,et al. Plane stress yield function for aluminum alloy sheets—part 1: theory , 2003 .
[41] Laurent Adam,et al. Thermomechanical modeling of metals at finite strains: First and mixed order finite elements , 2005 .