SMC complexes: Lifting the lid on loop extrusion

[1]  J. Marko,et al.  DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations , 2022, bioRxiv.

[2]  J. Chin,et al.  Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites. , 2021, Molecular cell.

[3]  C. Haering,et al.  A hold-and-feed mechanism drives directional DNA loop extrusion by condensin , 2021, bioRxiv.

[4]  J. Peters,et al.  Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism , 2021, Cell.

[5]  J. Peters,et al.  SMC complexes can traverse physical roadblocks bigger than their ring size , 2021, bioRxiv.

[6]  S. Takada,et al.  Opening of cohesin's SMC ring is essential for timely DNA replication and DNA loop formation. , 2021, Cell reports.

[7]  Yunje Cho,et al.  Structure Basis for Shaping the Nse4 protein by the Nse1 and Nse3 dimer within the Smc5/6 complex. , 2021, Journal of molecular biology.

[8]  M. Molodtsov,et al.  A Brownian ratchet model for DNA loop extrusion by the cohesin complex , 2021, bioRxiv.

[9]  C. Dekker,et al.  Bridging-induced phase separation induced by cohesin SMC protein complexes , 2021, Science Advances.

[10]  Bhavin S. Khatri,et al.  Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast , 2021, Nucleic acids research.

[11]  C. Dekker,et al.  The condensin holocomplex cycles dynamically between open and collapsed states , 2020, Nature Structural & Molecular Biology.

[12]  K. Nasmyth,et al.  Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3 , 2020, eLife.

[13]  M. Beck,et al.  Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism , 2020, Nature Structural & Molecular Biology.

[14]  X. Darzacq,et al.  Cohesin residency determines chromatin loop patterns , 2020, bioRxiv.

[15]  Y. Kurokawa,et al.  DNA Binding by the Mis4Scc2 Loader Promotes Topological DNA Entrapment by the Cohesin Ring. , 2020, Cell reports.

[16]  A. Musacchio,et al.  Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA , 2020, Molecular cell.

[17]  X. Bai,et al.  Cryo-EM structure of the human cohesin-NIPBL-DNA complex , 2020, Science.

[18]  H. Kimura,et al.  Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner , 2020, eLife.

[19]  J. Rappsilber,et al.  A Structure-Based Mechanism for DNA Entry into the Cohesin Ring , 2020, bioRxiv.

[20]  D. Panne,et al.  The structure of the cohesin ATPase elucidates the mechanism of SMC–kleisin ring opening , 2020, Nature Structural & Molecular Biology.

[21]  K. Nasmyth,et al.  Organization of Chromosomal DNA by SMC Complexes. , 2019, Annual review of genetics.

[22]  Ilya J. Finkelstein,et al.  Human cohesin compacts DNA by loop extrusion , 2019, Science.

[23]  J. Peters,et al.  DNA loop extrusion by human cohesin , 2019, Science.

[24]  M. J. Neale,et al.  Principles of meiotic chromosome assembly revealed in S. cerevisiae , 2019, Nature Communications.

[25]  L. Mirny,et al.  Chromosome organization by one-sided and two-sided loop extrusion , 2019, bioRxiv.

[26]  K. Nasmyth,et al.  Sister DNA Entrapment between Juxtaposed Smc Heads and Kleisin of the Cohesin Complex , 2019, Molecular cell.

[27]  A. Musacchio,et al.  Human condensin I and II drive extensive ATP–dependent compaction of nucleosome–bound DNA , 2019, bioRxiv.

[28]  Jacob W. J. Kerssemakers,et al.  DNA-loop extruding condensin complexes can traverse one another , 2019, Nature.

[29]  Corella S. Casas-Delucchi,et al.  A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes , 2019, Molecular cell.

[30]  V. Corces,et al.  A tethered-inchworm model of SMC DNA translocation , 2018, Nature Structural & Molecular Biology.

[31]  Sevinç Ercan,et al.  Condensin Depletion Causes Genome Decompaction Without Altering the Level of Global Gene Expression in Saccharomyces cerevisiae , 2018, Genetics.

[32]  Shikhar Uttam,et al.  Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells , 2018, Cell reports.

[33]  K. Nasmyth,et al.  Scc2 Is a Potent Activator of Cohesin’s ATPase that Promotes Loading by Binding Scc1 without Pds5 , 2018, Molecular cell.

[34]  A. Barducci,et al.  DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes , 2018, bioRxiv.

[35]  C. Dekker,et al.  Real-time imaging of DNA loop extrusion by condensin , 2018, Science.

[36]  J. Ellenberg,et al.  A quantitative map of human Condensins provides new insights into mitotic chromosome architecture , 2018, bioRxiv.

[37]  J. R. Paulson,et al.  A pathway for mitotic chromosome formation , 2018, Science.

[38]  F. Uhlmann,et al.  Establishment of DNA-DNA Interactions by the Cohesin Ring , 2018, Cell.

[39]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[40]  S. Harrison,et al.  The Kinetochore Receptor for the Cohesin Loading Complex , 2017, Cell.

[41]  B. Oh,et al.  Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization , 2017, Molecular cell.

[42]  Brian D. Slaughter,et al.  Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters , 2017, Science Advances.

[43]  Maxim I Molodtsov,et al.  Rapid movement and transcriptional re‐localization of human cohesin on DNA , 2016, The EMBO journal.

[44]  Z. Otwinowski,et al.  Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy , 2016, Proceedings of the National Academy of Sciences.

[45]  E. Chautard,et al.  Nucleosome eviction in mitosis assists condensin loading and chromosome condensation , 2016, The EMBO journal.

[46]  H. Niki,et al.  In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA , 2016, Scientific Reports.

[47]  F. Uhlmann,et al.  Evidence for cohesin sliding along budding yeast chromosomes , 2016, Open Biology.

[48]  F. Uhlmann SMC complexes: from DNA to chromosomes , 2016, Nature Reviews Molecular Cell Biology.

[49]  T. Hirano,et al.  Condensin-Based Chromosome Organization from Bacteria to Vertebrates , 2016, Cell.

[50]  K. Nasmyth,et al.  Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1 , 2016, Cell reports.

[51]  Anton Goloborodko,et al.  Compaction and segregation of sister chromatids via active loop extrusion , 2016, bioRxiv.

[52]  F. Uhlmann,et al.  DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism , 2015, Cell.

[53]  C. Sjögren,et al.  The Smc5/6 Complex Is an ATP-Dependent Intermolecular DNA Linker. , 2015, Cell reports.

[54]  Carmay Lim,et al.  A simple biophysical model emulates budding yeast chromosome condensation , 2015, eLife.

[55]  Tetsuya J. Kobayashi,et al.  Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. , 2015, Developmental cell.

[56]  A. Stewart,et al.  The Scc2/Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions , 2014, Nature Genetics.

[57]  Q. Qu,et al.  Structure of cohesin subcomplex pinpoints direct shugoshin–Wapl antagonism in centromeric cohesion , 2014, Nature Structural &Molecular Biology.

[58]  Boris Lenhard,et al.  A Cohesin-Independent Role for NIPBL at Promoters Provides Insights in CdLS , 2014, PLoS genetics.

[59]  F. Uhlmann,et al.  Biochemical reconstitution of topological DNA binding by the cohesin ring , 2013, Nature.

[60]  A. Oshlack,et al.  Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes , 2013, Nature Communications.

[61]  John F. Marko,et al.  Self-organization of domain structures by DNA-loop-extruding enzymes , 2012, Nucleic acids research.

[62]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[63]  J. Sommer,et al.  A model for segregation of chromatin after replication: segregation of identical flexible chains in solution. , 2011, Biophysical journal.

[64]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[65]  S. Grewal,et al.  Centromeric Localization of Dispersed Pol III Genes in Fission Yeast , 2010, Molecular biology of the cell.

[66]  C. K. Schmidt,et al.  Conserved features of cohesin binding along fission yeast chromosomes , 2009, Genome Biology.

[67]  Keehyoung Joo,et al.  Structural Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption of Intersubunit Interactions , 2009, Cell.

[68]  T. Itoh,et al.  Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. , 2008, Genes & development.

[69]  D. Engelke,et al.  Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. , 2008, Genes & development.

[70]  K. Nasmyth,et al.  The cohesin ring concatenates sister DNA molecules , 2008, Nature.

[71]  Erica A. Peterson,et al.  Condensin is required for chromosome arm cohesion during mitosis. , 2006, Genes & development.

[72]  S. Jun,et al.  Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome , 2006, Proceedings of the National Academy of Sciences.

[73]  T. Itoh,et al.  Cohesin relocation from sites of chromosomal loading to places of convergent transcription , 2004, Nature.

[74]  K. Nasmyth,et al.  Chromosomal Cohesin Forms a Ring , 2003, Cell.

[75]  M. Tomita,et al.  Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging , 2017 .