Manifold Transfer Subspace Learning (MTSL) for Applications in Aided Target Recognition

Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning

[1]  Jack Y. Yang,et al.  A comparative study of different machine learning methods on microarray gene expression data , 2008, BMC Genomics.

[2]  Yi Wu,et al.  A general framework for transfer sparse subspace learning , 2012, Neural Computing and Applications.

[3]  Erik Blasch,et al.  Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition , 2013, Defense, Security, and Sensing.

[4]  O. Mendoza-Schrock,et al.  Electro-optical synthetic civilian vehicle data domes , 2012, 2012 IEEE National Aerospace and Electronics Conference (NAECON).

[5]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[6]  Guozhu Dong,et al.  Gender classification from video under challenging operating conditions , 2014, Defense + Security Symposium.

[7]  Ronald R. Coifman,et al.  Diffusion Maps for Signal Processing: A Deeper Look at Manifold-Learning Techniques Based on Kernels and Graphs , 2013, IEEE Signal Processing Magazine.

[8]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[9]  Juan Ramirez,et al.  Diffusion maps for exploring electro-optical synthetic vehicle image data , 2012, 2012 IEEE National Aerospace and Electronics Conference (NAECON).

[10]  Erik Blasch,et al.  Operating condition modeling for ATR fusion assessment , 2007, SPIE Defense + Commercial Sensing.

[11]  Olga Mendoza-Schrock,et al.  Applying manifold learning techniques to the CAESAR database , 2010, Defense + Commercial Sensing.

[12]  Dacheng Tao,et al.  Bregman Divergence-Based Regularization for Transfer Subspace Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[13]  John C. Gallagher,et al.  Exploring EO vehicle recognition performance using manifolds as a function of lighting condition variability , 2015, Defense + Security Symposium.

[14]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.