Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation

We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: The master equation for the model, which takes into account both a coherent continuous drive and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between $0$ and $1$, and divides the diagram identified by the two energy scales of the system---the tunneling and the nonlinear Kerr interaction---into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike state with photons locked on each cavity, identified by antibunching of emitted light.

[1]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[2]  T. Puppe,et al.  Nonlinear spectroscopy of photons bound to one atom , 2008, 0803.2712.

[3]  I. Carusotto,et al.  Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays , 2009, 0904.4437.

[4]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[5]  M. Hartmann,et al.  Polariton crystallization in driven arrays of lossy nonlinear resonators. , 2009, Physical review letters.

[6]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[7]  H. Evertz,et al.  Excitation spectra of strongly correlated lattice bosons and polaritons , 2009, 0904.1350.

[8]  O. Schmidt,et al.  Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances , 2008 .

[9]  D. E. Chang,et al.  Crystallization of strongly interacting photons in a nonlinear optical fibre , 2007, 0712.1817.

[10]  S. Bose,et al.  Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays , 2006, quant-ph/0606159.

[11]  Alexandre Blais,et al.  Dispersive regime of circuit QED : Photon-dependent qubit dephasing and relaxation rates , 2008, 0810.1336.

[12]  G. Agarwal,et al.  Solitonic behaviour in coupled multi atom–cavity systems , 2009 .

[13]  L. Andreani,et al.  Quantum theory of exciton-photon coupling in photonic crystal slabs with embedded quantum wells , 2007, 0706.0396.

[14]  E. K. Irish,et al.  Dynamics in a coupled-cavity array , 2008, 0804.2882.

[15]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[16]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[17]  Benjamin Dwir,et al.  Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities. , 2008, Optics express.

[18]  Pierre Meystre Exploring the Quantum: Atoms, Cavities, and Photons , 2007 .

[19]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[20]  Near-field imaging of coupled photonic-crystal microcavities , 2009 .

[21]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[22]  S. Bose,et al.  Heralded generation of entanglement with coupled cavities , 2007, 0712.2413.

[23]  G. Nardin,et al.  Nonlinear relaxation of zero-dimension-trapped microcavity polaritons , 2008, 0905.3186.

[24]  Martin B Plenio,et al.  Effective spin systems in coupled microcavities. , 2007, Physical review letters.

[25]  Carmichael,et al.  Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators. , 1989, Physical review. A, General physics.

[26]  Field correlations and effective two-level atom-cavity systems (4 pages) , 2003, quant-ph/0310170.

[27]  Andrew D. Greentree,et al.  Quantum phase transitions of light , 2006, cond-mat/0609050.

[28]  Alastair Kay,et al.  Reproducing spin lattice models in strongly coupled atom-cavity systems , 2008 .

[29]  Rosario Fazio,et al.  Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities. , 2007, Physical review letters.

[30]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[31]  Excitations of strongly correlated lattice polaritons. , 2010, Physical review letters.

[32]  A. Greentree,et al.  Quantum phase transitions in photonic cavities with two-level systems , 2007, 0710.5748.

[33]  H. Carmichael An open systems approach to quantum optics , 1993 .

[34]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[35]  Vittorio Giovannetti,et al.  The quantum-optical Josephson interferometer , 2008, 0811.3762.

[36]  Jean-Michel Gérard,et al.  Strong-coupling regime for quantum boxes in pillar microcavities: Theory , 1999 .

[37]  Solitons in interacting Dicke models of coupled cavities with two-level systems , 2007, 0707.0846.

[38]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[39]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[40]  Jaeyoon Cho,et al.  Fractional quantum Hall state in coupled cavities. , 2008, Physical review letters.

[41]  S. Combrie,et al.  Directive emission from high-Q photonic crystal cavities through band folding , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[42]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[43]  I. Carusotto,et al.  Fermionized photons in an array of driven dissipative nonlinear cavities. , 2008, Physical review letters.

[44]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[45]  S. Stenholm,et al.  Variational functions in driven open quantum systems , 2003 .

[46]  M. Karl,et al.  Localized and delocalized modes in coupled optical micropillar cavities. , 2007, Optics express.

[47]  I. Carusotto,et al.  Feshbach blockade: Single-photon nonlinear optics using resonantly enhanced cavity polariton scattering from biexciton states , 2010, 1002.2613.

[48]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[49]  Cristiano Ciuti,et al.  Polariton quantum blockade in a photonic dot , 2006 .

[50]  R. Sillitto The Quantum Theory of Light , 1974 .

[51]  F. Laussy,et al.  Luminescence spectra of quantum dots in microcavities. II. Fermions , 2008, 0812.2694.

[52]  Andrew G. Glen,et al.  APPL , 2001 .

[53]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[54]  M. Grochol Quantum phase transitions in an array of coupled nanocavity quantum dots , 2009 .

[55]  E. L. Hu,et al.  Tuning photonic nanocavities by atomic force microscope nano-oxidation , 2006 .

[56]  P. Littlewood,et al.  Quantum fluctuations, temperature, and detuning effects in solid-light systems. , 2008, Physical review letters.

[57]  V. Savona,et al.  Single photons from coupled quantum modes. , 2010, Physical review letters.

[58]  I. Carusotto Nonlinear atomic Fabry-Perot interferometer: From the mean-field theory to the atom blockade effect , 2001 .

[59]  Michael J. Hartmann,et al.  Quantum many‐body phenomena in coupled cavity arrays , 2008, 0808.2557.

[60]  Jens Koch,et al.  Nonlinear response of the vacuum Rabi resonance , 2008, 0807.2882.

[61]  S. Combrie,et al.  GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm. , 2008, Optics letters.

[62]  Polariton quantum boxes in semiconductor microcavities , 2006, cond-mat/0602665.

[63]  Annamaria Gerardino,et al.  Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation , 2009 .

[64]  G. Blatter,et al.  Strong coupling theory for the Jaynes-Cummings-Hubbard model. , 2009, Physical review letters.

[65]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[66]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[67]  C. Ciuti,et al.  Theory of polariton parametric interactions in semiconductor microcavities , 2003 .

[68]  Yoshihisa Yamamoto,et al.  Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities , 2007, quant-ph/0703219.

[69]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[70]  J. Koch,et al.  Superfluid–Mott-insulator transition of light in the Jaynes-Cummings lattice , 2009, 0905.4005.