Conformal invariance, the central charge, and universal finite-size amplitudes at criticality.

We show that for conformally invariant two-dimensional systems, the amplitude of the finite-size corrections to the free energy of an infinitely long strip of width L at criticality is linearly related to the conformal anomaly number c , for various boundary conditions. The result is confirmed by renormalization-group arguments and numerical calculations. It is also related to the magnitude of the Casimir effect in an interacting one-dimensional field theory, and to the low-temperature specific heat in quantum chains. PACS numbers: 64.60.Fr, 05.70.Jk, 68.55.–a, 75.40.–s

[1]  V. Man'ko,et al.  Group Theoretical Methods in Physics , 1987 .

[2]  I. Affleck Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly , 1986 .

[3]  Nightingale,et al.  Surface free energies of three-dimensional Ising models and universality of finite-size scaling amplitudes by direct Monte Carlo sampling. , 1985, Physical review. B, Condensed matter.

[4]  Nightingale,et al.  Effect of criticality on wetting layers. , 1985, Physical review letters.

[5]  M. Nightingale,et al.  The temperature exponent of the n-component cubic model , 1984 .

[6]  J. Cardy,et al.  Conformal Invariance and Surface Critical Behavior , 1984 .

[7]  V. Dotsenko,et al.  Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models - Nucl. Phys. B240, 312 (1984) , 1984 .

[8]  M. Fisher,et al.  Universal critical amplitudes in finite-size scaling , 1984 .

[9]  S. Shenker,et al.  Conformal invariance, unitarity, and critical exponents in two dimensions , 1984 .

[10]  Alexander M. Polyakov,et al.  Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .

[11]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[12]  H. Blöte,et al.  The relation between amplitudes and critical exponents in finite-size scaling , 1983 .

[13]  M. Nijs Extended scaling relations for the magnetic critical exponents of the Potts model , 1983 .

[14]  Peter Nightingale Finite‐size scaling and phenomenological renormalization (invited) , 1982 .

[15]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[16]  M. Nightingale,et al.  Critical behaviour of the two-dimensional Potts model with a continuous number of states; A finite size scaling analysis , 1982 .

[17]  H.J.F Knops,et al.  Renormalization connection between the eight-vertex model and the gaussian model , 1980 .

[18]  H. Beijeren,et al.  Exactly solvable model for the roughening transition of a crystal surface , 1977 .

[19]  M. Fisher,et al.  Bounded and inhomogeneous Ising models. II. Specific-heat scaling function for a strip , 1975 .

[20]  Minoru Takahashi Low-Temperature Specific Heat of Spin-1/2 Anisotropic Heisenberg Ring , 1973 .

[21]  H. Nielsen,et al.  A physical interpretation of the Jacobi imaginary transformation and the critical dimension in dual models , 1973 .

[22]  R. Baxter Partition function of the eight vertex lattice model , 1972 .

[23]  L. Kadanoff,et al.  Some Critical Properties of the Eight-Vertex Model , 1971 .

[24]  F. Wu Ising Model with Four-Spin Interactions , 1971 .

[25]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[26]  S. Katsura,et al.  Statistical Mechanics of the Anisotropic Linear Heisenberg Model , 1962 .