Strain-Engineered Biaxial Tensile Epitaxial Germanium for High-Performance Ge/InGaAs Tunnel Field-Effect Transistors

The structural, morphological, and energy band alignment properties of biaxial tensile-strained germanium epilayers, grown in-situ on GaAs via a linearly graded InxGa1-xAs buffer architecture and utilizing dual chamber molecular beam epitaxy, were investigated. Precise control over the growth conditions yielded a tunable in-plane biaxial tensile strain within the Ge thin films that was modulated by the underlying InxGa1-xAs “virtual substrate” composition. In-plane tensile strains up to 1.94% were achieved without Ge relaxation for layer thicknesses of 15 to 30 nm. High-resolution x-ray diffraction supported the pseudomorphic nature of the Ge/InxGa1-xAs interface, indicating a quasi-ideal stress transfer to the Ge lattice. High-resolution transmission electron microscopy revealed defect-free Ge epitaxy and a sharp, coherent interface at the Ge/InxGa1-xAs heterojunction. Surface morphology characterization using atomic force microscopy exhibited symmetric, 2-D cross-hatch patterns with root mean square roughness less than 4.5 nm. X-ray photoelectron spectroscopic analysis revealed a positive, monotonic trend in band offsets for increasing tensile strain. The superior structural and band alignment properties of strain-engineered epitaxial Ge suggest that tensile-strained Ge/InxGa1-xAs heterostructures show great potential for future high-performance tunnel field-effect transistor architectures requiring flexible device design criteria while maintaining low power, energy-efficient device operation.

[1]  W. Pompe,et al.  Development of Cross-Hatch Morphology During Growth of Lattice Mismatched Layers , 2000 .

[2]  Harry H. Wieder,et al.  Band‐edge discontinuities of strained‐layer InxGa1−xAs/GaAs heterojunctions and quantum wells , 1989 .

[3]  J. Fastenau,et al.  Barrier-Engineered Arsenide–Antimonide Heterojunction Tunnel FETs With Enhanced Drive Current , 2012, IEEE Electron Device Letters.

[4]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[5]  F. Romanato,et al.  Strain relaxation in graded composition InxGa1−xAs/GaAs buffer layers , 1999 .

[6]  M. Hudait,et al.  In situ grown Ge in an arsenic-free environment for GaAs/Ge/GaAs heterostructures on off-oriented (100) GaAs substrates using molecular beam epitaxy , 2012 .

[7]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[8]  S. Priya,et al.  Tensile-strained nanoscale Ge/In0.16Ga0.84As heterostructure for tunnel field-effect transistor. , 2014, ACS applied materials & interfaces.

[9]  J. Fastenau,et al.  Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application , 2013 .

[10]  Yan Zhu,et al.  Structural, morphological, and band alignment properties of GaAs/Ge/GaAs heterostructures on (100), (110), and (111)A GaAs substrates , 2013 .

[11]  J. Fastenau,et al.  Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructure , 2012 .

[12]  Eugene A. Fitzgerald,et al.  Growth of highly tensile-strained Ge on relaxed InxGa1−xAs by metal-organic chemical vapor deposition , 2008 .

[13]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[14]  J. Fastenau,et al.  Structural, morphological, and defect properties of metamorphic In0.7Ga0.3As/GaAs0.35Sb0.65 p-type tunnel field effect transistor structure grown by molecular beam epitaxy , 2013 .

[15]  Yee-Chia Yeo,et al.  Tunneling field-effect transistor with Ge/In0.53Ga0.47As heterostructure as tunneling junction , 2013 .

[16]  M. Hudait,et al.  Self-annihilation of antiphase boundaries in GaAs epilayers on Ge substrates grown by metal-organic vapor-phase epitaxy , 2001 .

[17]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[18]  E. Fitzgerald,et al.  Compositionally-graded InGaAs–InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs , 2011 .

[19]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[20]  K. Kao,et al.  Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation , 2014 .

[21]  M. Hudait,et al.  Low-power tunnel field effect transistors using mixed As and Sb based heterostructures , 2013 .

[22]  Steven A. Ringel,et al.  Strain relaxation properties of InAsyP1−y metamorphic materials grown on InP substrates , 2009 .

[23]  W. Pompe,et al.  Modeling cross-hatch surface morphology in growing mismatched layers , 2002 .

[24]  Eugene A. Fitzgerald,et al.  High-quality metamorphic compositionally graded InGaAs buffers , 2010 .

[25]  P. K. Basu,et al.  Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs , 1991 .

[26]  J. Fastenau,et al.  Structural properties and band offset determination of p-channel mixed As/Sb type-II staggered gap tunnel field-effect transistor structure , 2012 .

[27]  Amy W. K. Liu,et al.  Experimental Staggered-Source and N+ Pocket-Doped Channel III–V Tunnel Field-Effect Transistors and Their Scalabilities , 2011 .

[28]  S. M. Ting,et al.  Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates , 2000 .

[29]  Suman Datta,et al.  Role of InAs and GaAs terminated heterointerfaces at source/channel on the mixed As-Sb staggered gap tunnel field effect transistor structures grown by molecular beam epitaxy , 2012 .

[30]  Yasushi Takano,et al.  Epitaxial growth of InGaAs on misoriented GaAs(100) substrate by metal-organic vapor phase epitaxy , 2002 .

[31]  M. Hudait,et al.  Atomic force microscopic study of surface morphology in Si-doped epi-GaAs on Ge substrates: effect of off-orientation , 2000 .

[32]  Mobility enhancement in tensile-strained Ge grown on InAlP metamorphic templates , 2014 .

[33]  G. Dewey,et al.  Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing , 2011, 2011 International Electron Devices Meeting.

[34]  S. Su,et al.  Epitaxy of In0.01Ga0.99As on Ge/offcut Si (001) virtual substrate , 2012 .

[35]  T. C. Mcgill,et al.  Measurement of the valence‐band offset in strained Si/Ge (100) heterojunctions by x‐ray photoelectron spectroscopy , 1990 .

[36]  F. Romanato,et al.  Lattice curvature generation in graded In x Ga 1-x As/GaAs buffer layers , 2000 .

[37]  Isabelle Sagnes,et al.  Effect of increasing thickness on tensile-strained germanium grown on InGaAs buffer layers , 2013 .

[38]  A. Seabaugh,et al.  Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 μA/μm at VDS = 0.5 V , 2012, 2012 International Electron Devices Meeting.