Large-area integration of two-dimensional materials and their heterostructures by wafer bonding

[1]  Chien-Chih Tseng,et al.  Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) , 2020, Nature.

[2]  N. Roxhed,et al.  Large-Scale Integration of 2D Material Heterostructures by Adhesive Bonding , 2020, 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS).

[3]  M. Lemme,et al.  Nonvolatile Resistive Switching in Nanocrystalline Molybdenum Disulfide with Ion‐Based Plasticity , 2019, Advanced Electronic Materials.

[4]  D. Neumaier,et al.  Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity , 2019, Scientific Reports.

[5]  F. Niklaus,et al.  Suspended Graphene Membranes with Attached Silicon Proof Masses as Piezoresistive Nanoelectromechanical Systems Accelerometers , 2019, Nano letters.

[6]  D. Akinwande,et al.  Graphene and two-dimensional materials for silicon technology , 2019, Nature.

[7]  A. Fischer,et al.  Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers , 2019, Nature Electronics.

[8]  R. Fischer,et al.  Locally defined quantum emission from epitaxial few-layer tungsten diselenide , 2019, Applied Physics Letters.

[9]  D. Neumaier,et al.  Integrating graphene into semiconductor fabrication lines , 2019, Nature Materials.

[10]  T. Taniguchi,et al.  High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. , 2019, ACS nano.

[11]  R. Ruoff,et al.  Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water , 2019, Chemistry of Materials.

[12]  J. Kong,et al.  Paraffin-enabled graphene transfer , 2019, Nature Communications.

[13]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[14]  N. Roxhed,et al.  Wafer-Scale Transfer of Graphene by Adhesive Wafer Bonding , 2019, 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS).

[15]  F. Zhang,et al.  Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories , 2018, Nature Materials.

[16]  B. Jonker,et al.  A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers , 2018, APL Materials.

[17]  Antonio D’Errico,et al.  Graphene-based integrated photonics for next-generation datacom and telecom , 2018, Nature Reviews Materials.

[18]  M. Nagel,et al.  All CVD Boron Nitride Encapsulated Graphene FETs With CMOS Compatible Metal Edge Contacts , 2018, IEEE Transactions on Electron Devices.

[19]  Juerg Leuthold,et al.  Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size , 2018, ACS Photonics.

[20]  Wei Li,et al.  Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene , 2018, Journal of Micro and Nano-Manufacturing.

[21]  V. Pruneri,et al.  Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer , 2018 .

[22]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[23]  T. Taniguchi,et al.  Cleaning interfaces in layered materials heterostructures , 2018, Nature Communications.

[24]  P. Hurley,et al.  Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes. , 2018, Nano letters.

[25]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[26]  K. Sawada,et al.  Vacuum-sealed microcavity formed from suspended graphene by using a low-pressure dry-transfer technique , 2018 .

[27]  K. Banerjee,et al.  On-chip intercalated-graphene inductors for next-generation radio frequency electronics , 2018, Nature Electronics.

[28]  D. Zahn,et al.  Highly Localized Strain in a MoS2/Au Heterostructure Revealed by Tip-Enhanced Raman Spectroscopy. , 2017, Nano letters.

[29]  P. Bøggild,et al.  Mapping the electrical properties of large-area graphene , 2017 .

[30]  A. Centeno,et al.  Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization , 2017, Nano letters.

[31]  Sanghoo Park,et al.  Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope , 2017 .

[32]  S. Goossens,et al.  Broadband image sensor array based on graphene–CMOS integration , 2017, Nature Photonics.

[33]  G. Duesberg,et al.  Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications , 2016 .

[34]  C. Stampfer,et al.  Identifying suitable substrates for high-quality graphene-based heterostructures , 2016, 1610.08773.

[35]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[36]  S. Maier,et al.  Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene , 2016, Scientific Reports.

[37]  Qingpu Wang,et al.  Graphene ballistic nano-rectifier with very high responsivity , 2016, Nature Communications.

[38]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[39]  C. Stampfer,et al.  Ballistic Transport Exceeding 28 μm in CVD Grown Graphene. , 2015, Nano letters.

[40]  Wei Liu,et al.  2D Semiconductor FETs—Projections and Design for Sub-10 nm VLSI , 2015, IEEE Transactions on Electron Devices.

[41]  C. Stampfer,et al.  Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper , 2015, Science Advances.

[42]  Mikael Östling,et al.  Residual metallic contamination of transferred chemical vapor deposited graphene. , 2015, ACS nano.

[43]  Takashi Taniguchi,et al.  Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride , 2015, 1504.01625.

[44]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[45]  Joshua A. Kaitz,et al.  Annealing free, clean graphene transfer using alternative polymer scaffolds , 2015, Nanotechnology.

[46]  J. Coleman,et al.  Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply , 2014, Scientific Reports.

[47]  T. Booth,et al.  Graphene transport properties upon exposure to PMMA processing and heat treatments , 2014 .

[48]  Jian-Wei Pan,et al.  Single quantum emitters in monolayer semiconductors. , 2014, Nature nanotechnology.

[49]  J. Zhong,et al.  Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition , 2014 .

[50]  Xiao Hu,et al.  Direct dry transfer of chemical vapor deposition graphene to polymeric substrates , 2014, 1410.4857.

[51]  D. Akinwande,et al.  Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. , 2014, ACS nano.

[52]  G. Duesberg,et al.  Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer‐Assisted Transfer , 2014 .

[53]  Daniel Schall,et al.  50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems , 2014 .

[54]  Lianmao Peng,et al.  Graphene/Si CMOS Hybrid Hall Integrated Circuits , 2014, Scientific Reports.

[55]  C. Stampfer,et al.  Raman spectroscopy as probe of nanometre-scale strain variations in graphene , 2014, Nature Communications.

[56]  Takashi Taniguchi,et al.  Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices , 2014, 1401.5356.

[57]  L. Vandersypen,et al.  Ballistic transport in graphene grown by chemical vapor deposition , 2014, 1401.6771.

[58]  K. Loh,et al.  Face-to-face transfer of wafer-scale graphene films , 2013, Nature.

[59]  G. Duesberg,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[60]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[61]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[62]  M. Dresselhaus,et al.  Direct transfer of graphene onto flexible substrates , 2013, Proceedings of the National Academy of Sciences.

[63]  Yanlong Wang,et al.  Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. , 2013, Small.

[64]  L. Levitov,et al.  Electron interactions and gap opening in graphene superlattices. , 2012, Physical review letters.

[65]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[66]  K. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2012, Nature.

[67]  A. M. van der Zande,et al.  Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. , 2012, Nano letters.

[68]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[69]  B. Cho,et al.  Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. , 2012, Nano letters.

[70]  J. Robinson,et al.  High-quality uniform dry transfer of graphene to polymers. , 2012, Nano letters.

[71]  S. Ryu,et al.  Optical separation of mechanical strain from charge doping in graphene , 2012, Nature Communications.

[72]  Q. Fu,et al.  Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum , 2012, Nature Communications.

[73]  R. Hermes,et al.  Male pygmy hippopotamus influence offspring sex ratio , 2012, Nature Communications.

[74]  Kai Yan,et al.  Toward clean and crackless transfer of graphene. , 2011, ACS nano.

[75]  Carl W. Magnuson,et al.  Transfer of CVD-grown monolayer graphene onto arbitrary substrates. , 2011, ACS nano.

[76]  S. Yoshii,et al.  Suppression of inhomogeneous segregation in graphene growth on epitaxial metal films. , 2011, Nano letters.

[77]  Po-Wen Chiu,et al.  Clean transfer of graphene for isolation and suspension. , 2011, ACS nano.

[78]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[79]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[80]  L. Selmi,et al.  Mobility extraction in SOI MOSFETs with sub 1 nm body thickness , 2009 .

[81]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[82]  Michael Nagel,et al.  Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution , 2009 .

[83]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[84]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[85]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[86]  J.T.M. Stevenson,et al.  Suspended Greek cross test structures for measuring the sheet resistance of non-standard cleanroom materials , 2005, Proceedings of the 2005 International Conference on Microelectronic Test Structures, 2005. ICMTS 2005..

[87]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[88]  Richard H. Friend,et al.  High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors , 2004 .

[89]  G. Stemme,et al.  Low temperature full wafer adhesive bonding , 2001 .

[90]  Philip E. Garrou,et al.  Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules , 1991 .

[91]  J. Renard,et al.  Unravelling external perturbation effects on the optical phonon response of graphene , 2018 .

[92]  Daryoosh Saeedkia,et al.  Handbook of terahertz technology for imaging, sensing and communications , 2013 .

[93]  M. E. Mills,et al.  Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material , 1997 .