Algebraic Logic, Where Does it Stand Today?

Abstract This is a survey article on algebraic logic. It gives a historical background leading up to a modern perspective. Central problems in algebraic logic (like the representation problem) are discussed in connection to other branches of logic, like modal logic, proof theory, model-theoretic forcing, finite combinatorics, and Gödel's incompleteness results. We focus on cylindric algebras. Relation algebras and polyadic algebras are mostly covered only insofar as they relate to cylindric algebras, and even there we have not told the whole story. We relate the algebraic notion of neat embeddings (a notion special to cylindric algebras) to the metalogical ones of provability, interpolation and omitting types in variants of first logic. Another novelty that occurs here is relating the algebraic notion of atom-canonicity for a class of boolean algebras with operators to the metalogical one of omitting types for the corresponding logic. A hitherto unpublished application of algebraic logic to omitting types of first order logic is given. Proofs are included when they serve to illustrate certain concepts. Several open problems are posed. We have tried as much as possible to avoid exploring territory already explored in the survey articles of Monk [93] and Németi [97] in the subject.

[1]  Tarek Sayed Ahmed,et al.  On Neat Reducts of Algebras of Logic , 2001, Stud Logica.

[2]  Paul R. Halmos,et al.  An autobiography of Polyadic Algebras , 2000, Log. J. IGPL.

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  Roger D. Maddux Finitary Algebraic Logic , 1989, Math. Log. Q..

[5]  Algebraic logic , 1985, Problem books in mathematics.

[6]  Hajnal Andréka,et al.  Groups and algebras of nary relations , 2002, Bull. Symb. Log..

[7]  Szabolcs Mikulás,et al.  Axiomatizability of reducts of algebras of relations , 2000 .

[8]  Ildikó Sain,et al.  Finite Schematizable Algebraic Logic , 1997, Log. J. IGPL.

[9]  AMALGAMATION , 1963 .

[10]  István Németi,et al.  Cylindric-relativised set algebras have strong amalgamation , 1985, Journal of Symbolic Logic.

[11]  Roger D. Maddux,et al.  Canonical relativized cylindric set algebras , 1989 .

[12]  Tarek Sayed Ahmed,et al.  The class of 2-dimensional neat reducts is not elementary , 2002 .

[13]  J. Donald Monk,et al.  Nonfinitizability of Classes of Representable Cylindric Algebras , 1969, J. Symb. Log..

[14]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[15]  R. Maddux The neat embedding problem and the number of variables required in proofs , 1991 .

[16]  Roger D. Maddux,et al.  Relation algebras of every dimension , 1992, Journal of Symbolic Logic.

[17]  Balázs Biró Non-Finite-Axiomatizability Results in Algebraic Logic , 1992, J. Symb. Log..

[18]  Hajnal Andréka,et al.  Complexity of Equations Valid in Algebras of Relations: Part II: Finite Axiomatizations , 1997, Ann. Pure Appl. Log..

[19]  maarten marx Algebraic Relativization and Arrow Logic , 1995 .

[20]  Ian M. Hodkinson,et al.  Provability with Finitely Many Variables , 2002, Bulletin of Symbolic Logic.

[21]  István Németi The class of neat-reducts of cylindric algebras is not a variety but is closed with respect to HP , 1983, Notre Dame J. Formal Log..

[22]  Tarek Sayed Ahmed,et al.  On amalgamation of reducts of polyadic algebras , 2004 .

[23]  J. Donald Monk,et al.  On an Algebra of Sets of Finite Sequences , 1970, J. Symb. Log..

[24]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[25]  Hajnal Andréka,et al.  A simple, purely algebraic proof of the completeness of some first order logics , 1975 .

[26]  R. Maddux Finitary axiomatizations of the true relational equations , 1993 .

[27]  Hajnal Andréka,et al.  Complexity of Equations Valid in Algebras of Relations: Part I: Strong Non-Finitizability , 1997, Ann. Pure Appl. Log..

[28]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[29]  Gábor Sági A Completeness Theorem for Higher Order Logics , 2000, J. Symb. Log..

[30]  Ian M. Hodkinson,et al.  Relation algebra reducts of cylindric algebras and an application to proof theory , 2002, Journal of Symbolic Logic.

[31]  András Simon,et al.  What the finitization problem is not , 1993 .

[32]  Ian M. Hodkinson,et al.  Atom Structures of Cylindric Algebras and Relation Algebras , 1997, Ann. Pure Appl. Log..

[33]  Larisa Maksimova,et al.  Amalgamation and interpolation in normal modal logics , 1991, Stud Logica.

[34]  T. Gergely,et al.  On universal algebraic constructions of logics , 1977 .

[35]  András Simon,et al.  Notions of Density That Imply Representability in Algebraic Logic , 1998, Ann. Pure Appl. Log..

[36]  D. Monk On representable relation algebras. , 1964 .

[37]  Enrique Casanovas,et al.  Omitting Types in Incomplete Theories , 1996, J. Symb. Log..

[38]  J. Madarász,et al.  Logic and Relativity (in the light of definability theory) , 2002 .

[39]  Robert Goldblatt,et al.  Algebraic Polymodal Logic: A Survey , 2000, Log. J. IGPL.

[40]  Stephen D. Comer,et al.  A sheaf-theoretic duality theory for cylindric algebras , 1972 .

[41]  Don Pigozzi,et al.  Amalgamation, congruence-extension, and interpolation properties in algebras , 1971 .

[42]  Roger D. Maddux,et al.  A sequent calculus for relation algebras , 1983, Ann. Pure Appl. Log..

[43]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[44]  Tarek Sayed Ahmed,et al.  On Amalgamation in Algebras of Logic , 2005, Stud Logica.

[45]  C. J. Everett,et al.  The Representation of Relational Algebras. , 1951 .

[46]  Robin Hirsch,et al.  Strongly representable atom structures of relation algebras , 2001 .

[47]  Tarek Sayed Ahmed,et al.  Martin's Axiom, Omitting Types, and Complete Representations in Algebraic Logic , 2002, Stud Logica.

[48]  Tarek Sayed Ahmed,et al.  A Modeltheoretic Solution to a Problem of Tarski , 2002, Math. Log. Q..

[49]  D. Monk,et al.  Representation theory for polyadic algebras , 1963 .

[50]  Ian M. Hodkinson,et al.  Complete representations in algebraic logic , 1997, Journal of Symbolic Logic.

[51]  J. DONALD MONK,et al.  An Introduction to Cylindric Set Algebras , 2000, Log. J. IGPL.

[52]  R. Lyndon THE REPRESENTATION OF RELATION ALGEBRAS, II , 1956 .

[53]  István Németi Strong Representability of Fork Algebras, a Set Theoretic Foundation , 1997, Log. J. IGPL.

[54]  maarten marx,et al.  Arrow logic and multi-modal logic , 1997 .

[55]  Roger D. Maddux Undecidable Semiassociative Relation Algebras , 1994, J. Symb. Log..

[56]  Augustus de Morgan,et al.  On the Syllogism, No. IV., and on the Logic of Relations , 1864 .

[57]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[58]  Robin Hirsch,et al.  Representability is not decidable for finite relation algebras , 1999 .

[59]  Maarten Marx,et al.  Relativized relation algebras , 1999 .

[60]  Ian M. Hodkinson,et al.  Step by step – Building representations in algebraic logic , 1997, Journal of Symbolic Logic.

[61]  Ian M. Hodkinson,et al.  Relation Algebras with n-Dimensional Relational Bases , 2000, Ann. Pure Appl. Log..

[62]  R. Maddux The equational theory of CA 3 is undecidable , 1980 .

[63]  Tarek Sayed Ahmed The Class of Neat Reducts is Not Elementary , 2001, Log. J. IGPL.

[64]  Hajnal Andréka,et al.  A Stone-type representation theorem for algebras of relations of higher rank , 1988 .

[65]  Y. Venema Atom structures and Sahlqvist equations , 1997 .

[66]  P. Heath,et al.  On the Syllogism and Other Logical Writings. , 1966 .

[67]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[68]  Ludomir Newelski Omitting Types and the Real Line , 1987, J. Symb. Log..

[69]  Roger D. Maddux The Equational Theory of CA3 is Undecidable , 1980, J. Symb. Log..

[70]  Hajnal Andréka,et al.  Decision problems for equational theories of relation algebras , 1997, Memoirs of the American Mathematical Society.

[71]  Robert Goldblatt,et al.  Persistence and Atomic Generation for Varieties of Boolean Algebras with Operators , 2001, Stud Logica.

[72]  Yde Venema Cylindric modal logic , 1993 .

[73]  George Weaver,et al.  Back and Forth Constructions in Modal Logic: An Interpolation Theorem for a Family of Modal Logics , 1986, J. Symb. Log..

[74]  Hajnal Andréka,et al.  Weakly representable but not representable relation algebras , 1994 .

[75]  Roger D. Maddux Finitary Algebraic Logic II , 1993, Math. Log. Q..

[76]  Robert Goldblatt,et al.  On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic , 1985, Journal of Symbolic Logic.

[77]  J. Donald Monk Provability with finitely many variables , 1971 .

[78]  J. P. Andersen The Representation of Relation Algebras , 1961 .

[79]  Roger D. Maddux,et al.  Nonfinite axiomatizability results for cylindric and relation algebras , 1989, Journal of Symbolic Logic.

[80]  Ian M. Hodkinson,et al.  Relation algebras form cylindric algebras, II , 2001, Ann. Pure Appl. Log..

[81]  Saharon Shelah,et al.  Isomorphic but not Lower Base-Isomorphic Cylindric Set Algebras , 1988, J. Symb. Log..

[82]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[83]  István Németi,et al.  On the equational theory of representable polyadic equality algebras , 2000, Journal of Symbolic Logic.