A MAX-SAT Algorithm Portfolio

The results of the last MaxSAT Evaluations suggest there is no universal best algorithm for solving MaxSAT, as the fastest solver often depends on the type of instance. Having an oracle able to predict the most suitable MaxSAT solver for a given instance would result in the most robust solver. Inspired by the success of SATzilla for SAT, this paper describes the first approach for a portfolio of algorithms for MaxSAT. Compared to existing solvers, the resulting portfolio can achieve significant performance improvements on a representative set of instances.

[1]  Lucas Bordeaux,et al.  Propositional Satisfiability and Constraint Programming: A comparative survey , 2006, CSUR.

[2]  Joao Marques-Silva,et al.  Algorithms for Maximum Satisfiability using Unsatisfiable Cores , 2008, 2008 Design, Automation and Test in Europe.

[3]  Ivana Kruijff-Korbayová,et al.  A Portfolio Approach to Algorithm Selection , 2003, IJCAI.

[4]  R. Snee,et al.  Ridge Regression in Practice , 1975 .

[5]  Simon de Givry,et al.  A logical approach to efficient Max-SAT solving , 2006, Artif. Intell..

[6]  Kevin Leyton-Brown,et al.  : The Design and Analysis of an Algorithm Portfolio for SAT , 2007, CP.

[7]  Sean Safarpour,et al.  Improved Design Debugging Using Maximum Satisfiability , 2007, Formal Methods in Computer Aided Design (FMCAD'07).

[8]  Yoav Shoham,et al.  Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.

[9]  Yoav Shoham,et al.  A portfolio approach to algorithm select , 2003, IJCAI 2003.

[10]  Michel Lemaître,et al.  Branch and Bound Algorithm Selection by Performance Prediction , 1998, AAAI/IAAI.

[11]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[12]  Felip Manyà,et al.  New Inference Rules for Max-SAT , 2007, J. Artif. Intell. Res..

[13]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[14]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.