A Tutorial on Multifractality, Cascades, and Interactivity for Empirical Time Series in Ecological Science

Interactivity is a central theme of ecological psychology. According to Gibsonian views, behavior is the emergent property of interactions between organism and environment. Hence, an important challenge for ecological psychology has been to identify physical principles that provide an empirical window into interactivity. We suspect that multifractality, a concept from statistical physics, may be helpful in this regard, and we offer this article as a tutorial on multifractality with 2 main goals. First, we aim to describe multifractality with a series of simple, concrete, but progressively more elaborate examples that will incrementally elucidate the relationship between multifractality and interactivity. Second, we aim to describe a direct estimation method for computing the multifractal spectrum (e.g., Chhabra & Jensen, 1989), presenting it as an alternative that avoids the pitfalls of more popular methods and that may address more appropriately the measurements traditionally taken by ecological psychologists. In sum, this tutorial aims to unpack the theoretical background for an analytical method allowing rigorous test of interactivity in a variety of empirical settings.

[1]  Michael J. Richardson,et al.  Rocking together: dynamics of intentional and unintentional interpersonal coordination. , 2007, Human movement science.

[2]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[3]  S. Jaffard,et al.  Wavelet Leaders in Multifractal Analysis , 2006 .

[4]  E. Montroll,et al.  On 1/f noise and other distributions with long tails. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K G Munhall,et al.  Skill acquisition and development: the roles of state-, parameter, and graph dynamics. , 1992, Journal of motor behavior.

[6]  W H Warren,et al.  Perceiving affordances: visual guidance of stair climbing. , 1984, Journal of experimental psychology. Human perception and performance.

[7]  Bruce J. West,et al.  THE LURE OF MODERN SCIENCE , 1995 .

[8]  Donald E Ingber,et al.  Cancer as a disease of epithelial-mesenchymal interactions and extracellular matrix regulation. , 2002, Differentiation; research in biological diversity.

[9]  Shaun Lovejoy,et al.  Multifractals, cloud radiances and rain , 2006 .

[10]  Yoshimasa Isawa,et al.  Theory of 1/f Noise , 1983 .

[11]  Leo Van Lier,et al.  The Ecology and Semiotics of Language Learning , 2004 .

[12]  Z. Ye,et al.  Domain Wall Dynamics Near the Phase Transition in PZN-9%PT , 2011 .

[13]  Shaun Lovejoy,et al.  Non-Linear Variability in Geophysics , 1991 .

[14]  Thomas M. Over,et al.  River flow mass exponents with fractal channel networks and rainfall , 2001 .

[15]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[16]  Espen A. F. Ihlen,et al.  Introduction to Multifractal Detrended Fluctuation Analysis in Matlab , 2012, Front. Physio..

[17]  J. Doyne Farmer,et al.  A Rosetta stone for connectionism , 1990 .

[18]  Julianne D. Halley,et al.  Nonequilibrium dynamics of social groups: insights from foraging Argentine ants , 2004, Insectes Sociaux.

[19]  Persi Diaconis,et al.  c ○ 2007 Society for Industrial and Applied Mathematics Dynamical Bias in the Coin Toss ∗ , 2022 .

[20]  M. Zamir Critique of the test of multifractality as applied to biological data. , 2003, Journal of theoretical biology.

[21]  Guido Boffetta,et al.  Power Laws in Solar Flares: Self-Organized Criticality or Turbulence? , 1999, chao-dyn/9904043.

[22]  B. Vereijken,et al.  Beyond 1 / f α fluctuation-1 Interaction-dominant dynamics in human cognition : Beyond 1 / f α fluctuation , 2010 .

[23]  Thadeu Josino Pereira Penna,et al.  Fourier-detrended fluctuation analysis , 2005 .

[24]  Peter J. Beek,et al.  The Science of Juggling , 1995 .

[25]  G. V. van Orden,et al.  Self-organization of cognitive performance. , 2003, Journal of experimental psychology. General.

[26]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[27]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[28]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[29]  Alen Hajnal,et al.  Transfer of calibration between hand and foot: Functional equivalence and fractal fluctuations , 2011, Attention, perception & psychophysics.

[30]  A. Chemero Self-Organization, Writ Large , 2008 .

[31]  Paolo Grigolini,et al.  Scaling detection in time series: diffusion entropy analysis. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  B. West,et al.  The Lure of Modern Science Fractal Thinking , 1995 .

[33]  Daniel Mirman,et al.  Interactions dominate the dynamics of visual cognition , 2010, Cognition.

[34]  Damian G. Stephen,et al.  Fractal fluctuations in gaze speed visual search , 2011, Attention, perception & psychophysics.

[35]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[36]  J. McCauley,et al.  Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance , 2006, cond-mat/0602316.

[37]  Damian G. Stephen,et al.  The dynamics of insight: Mathematical discovery as a phase transition , 2009, Memory & cognition.

[38]  Sam Tilsen,et al.  Multitimescale Dynamical Interactions Between Speech Rhythm and Gesture , 2009, Cogn. Sci..

[39]  Jozef Cernák,et al.  Inhomogeneous sandpile model: Crossover from multifractal scaling to finite-size scaling. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Dani Byrd,et al.  The Distinctions Between State, Parameter and Graph Dynamics in Sensorimotor Control and Coordination , 2006 .

[41]  Eric J. Kostelich,et al.  Measuring intense rotation and dissipation in turbulent flows , 2003, Nature.

[42]  K. Torre,et al.  Detection of long-range dependence and estimation of fractal exponents through ARFIMA modelling. , 2007, The British journal of mathematical and statistical psychology.

[43]  J. Kelso,et al.  The Complementary Nature , 2006 .

[44]  E. Reed Encountering the world: Toward an ecological psychology. , 1997 .

[45]  D. Schertzer,et al.  Uncertainty and Predictability in Geophysics: Chaos and Multifractal Insights , 2013 .

[46]  H. Haken,et al.  A theoretical model of phase transitions in human hand movements , 2004, Biological Cybernetics.

[47]  René L. Schilling,et al.  Fractals and chaos. The Mandelbrot set and beyond, by Benoit B. Mandelbrot. Pp. 308. £38.50. 2004, ISBN 0 387 20158 0 (Springer-Verlag). , 2005, The Mathematical Gazette.

[48]  Joseph F. Stephany,et al.  A theory of 1/f noise , 1998 .

[49]  Daniel Mirman,et al.  Lévy-like diffusion in eye movements during spoken-language comprehension. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  V. Isaeva Self-organization in biological systems , 2012, Biology Bulletin.

[51]  C. Tebaldi,et al.  Multifractal Scaling in the Bak-Tang-Wiesenfeld Sandpile and Edge Events , 1999, cond-mat/9903270.

[52]  M. Aschwanden,et al.  Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe , 2011 .

[53]  J. Kwapień,et al.  Wavelet versus detrended fluctuation analysis of multifractal structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  R. Jensen,et al.  Direct determination of the f(α) singularity spectrum , 1989 .

[55]  E. Bonabeau,et al.  Possible universality in the size distribution of fish schools. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Paolo Grigolini,et al.  A theory of 1/f noise in human cognition , 2009 .

[57]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality , 1998 .

[58]  I. Jánosi,et al.  Empirical mode decomposition and correlation properties of long daily ozone records. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  R. Plotnick,et al.  A multiplicative multifractal model for originations and extinctions , 2001, Paleobiology.

[60]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  Xiaodong Yang,et al.  Multifractal mass exponent spectrum of complex physiological time series , 2010 .

[62]  Shaun Lovejoy,et al.  Multifractal Generation of Self-Organized Criticality , 1993, Fractals in the Natural and Applied Sciences.

[63]  A. Staub,et al.  Gaze step distributions reflect fixations and saccades: A comment on Stephen and Mirman (2010) , 2012, Cognition.

[64]  Antonio Turiel,et al.  Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study , 2006, J. Comput. Phys..

[65]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[66]  James L. Pazun,et al.  Dynamic complexity inPhysarum polycephalum shuttle streaming , 1996, Protoplasma.

[67]  Ian G. Main,et al.  Statistical physics, seismogenesis, and seismic hazard , 1996 .

[68]  Gaudenz Danuser,et al.  Distinct ECM mechanosensing pathways regulate microtubule dynamics to control endothelial cell branching morphogenesis , 2011, The Journal of cell biology.

[69]  Per Bak,et al.  How Nature Works , 1996 .

[70]  Radhakrishnan Nagarajan,et al.  A multifractal description of wind speed records , 2004, cond-mat/0411534.

[71]  Robert F. Port,et al.  Rhythmic constraints on stress timing in English , 1998 .

[72]  Y. X. Huang,et al.  Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[74]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[75]  Thomas E. Gorochowski,et al.  Evolving dynamical networks: A formalism for describing complex systems , 2012, Complex..

[76]  T. Vicsek Fractal Growth Phenomena , 1989 .

[77]  M. Turvey,et al.  Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981) , 1981, Cognition.

[78]  Benoit B. Mandelbrot,et al.  Fractals and Chaos , 2004 .

[79]  George N. Reeke,et al.  BOOK REVIEW: "SELF-ORGANIZATION IN BIOLOGICAL SYSTEMS" BY S. CAMAZINE, J. DENEUBOURG, N. R. FRANKS, J. SNEYD, G. THERAULAZ AND E. BONABEAU , 2002 .

[80]  Maurizio Porfiri,et al.  Evolving dynamical networks , 2014 .

[81]  R. Ratcliff,et al.  Human cognition and a pile of sand: a discussion on serial correlations and self-organized criticality. , 2005, Journal of experimental psychology. General.

[82]  G. M. A Budget of Paradoxes , Nature.

[83]  A M Reynolds,et al.  The Lévy flight paradigm: random search patterns and mechanisms. , 2009, Ecology.

[84]  T. Johnston,et al.  Genes, interactions, and the development of behavior. , 2002, Psychological review.

[85]  D. Schertzer,et al.  Non-Linear Variability in Geophysics : Scaling and Fractals , 1990 .

[86]  R. Cardo,et al.  NON-CONCAVE MULTIFRACTAL SPECTRA WITH WAVELET LEADERS PROJECTION OF SIGNALS WITH AND WITHOUT CHIRPS , 2009 .

[87]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems , 1998 .

[88]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[89]  H. Stanley,et al.  Effect of trends on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  P. Viviani,et al.  32 Space-Time Invariance in Learned Motor Skills , 1980 .

[91]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[92]  D. Labat,et al.  Rainfall–runoff relations for karstic springs: multifractal analyses , 2002 .

[93]  Damian G. Stephen,et al.  The role of fractality in perceptual learning: exploration in dynamic touch. , 2010, Journal of experimental psychology. Human perception and performance.

[94]  L. V. Lier The Ecology and Semiotics of Language Learning: A Sociocultural Perspective , 2004 .

[95]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[96]  Radhakrishnan Nagarajan,et al.  Minimizing the Effect of sinusoidal Trends in Detrended Fluctuation Analysis , 2005, Int. J. Bifurc. Chaos.

[97]  Bras,et al.  Multifractal analysis: Pitfalls of standard procedures and alternatives. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[98]  Markus J. Aschwanden,et al.  Self-Organized Criticality in Astrophysics , 2011 .

[99]  G. V. van Orden,et al.  Dispersion of response times reveals cognitive dynamics. , 2009, Psychological review.

[100]  Reaction product fluctuations in a sphere wake , 1970 .

[101]  John B Rundle,et al.  Self-organized complexity in the physical, biological, and social sciences , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  D.P Mandic,et al.  On the characterization of the deterministic/stochastic and linear/nonlinear nature of time series , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  S. Schaal,et al.  Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements , 2000, Experimental Brain Research.

[104]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[105]  Michael F. Shlesinger,et al.  Strange kinetics , 1993, Nature.

[106]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[107]  Peter C M Molenaar,et al.  On the implications of the classical ergodic theorems: analysis of developmental processes has to focus on intra-individual variation. , 2008, Developmental psychobiology.

[108]  D. Sumpter The principles of collective animal behaviour , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[109]  Damian G. Stephen,et al.  The Self-Organization of Insight: Entropy and Power Laws in Problem Solving , 2009, J. Probl. Solving.

[110]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[111]  Michael T. Turvey,et al.  Human memory retrieval as Lévy foraging , 2007 .

[112]  R. Ratcliff,et al.  Estimation and interpretation of 1/fα noise in human cognition , 2004 .

[113]  Jensen,et al.  Direct determination of the f( alpha ) singularity spectrum and its application to fully developed turbulence. , 1989, Physical review. A, General physics.

[114]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[115]  Christopher T. Kello,et al.  Distributional and Temporal Properties of Eye Movement Trajectories in Scene Perception , 2011, CogSci.

[116]  Fausto Guzzetti,et al.  Self-organization, the cascade model, and natural hazards , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Shaun Lovejoy,et al.  Generalised scale invariance in turbulent phenomena , 1985 .

[118]  J. Bouchaud POWER-LAWS AND SCALING IN FINANCE: EMPIRICAL EVIDENCE AND SIMPLE MODELS , 2002 .

[119]  G. V. van Orden,et al.  Human cognition and 1/f scaling. , 2005, Journal of experimental psychology. General.

[120]  James A. Dixon,et al.  The scaling behavior of hand motions reveals self-organization during an executive function task , 2011 .

[121]  M. Turvey Affordances and Prospective Control: An Outline of the Ontology , 1992 .

[122]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[123]  S. Havlin,et al.  Comparison of detrending methods for fluctuation analysis , 2008, 0804.4081.

[124]  J. Willis Simulation model of universal law of school size distribution applied to southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight , 2008 .

[125]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[126]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[127]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[128]  J. A. Scott Kelso,et al.  Dynamic Encounters: Long Memory During Functional Stabilization , 1999 .

[129]  Beatrix Vereijken,et al.  Interaction-dominant dynamics in human cognition: beyond 1/f(alpha) fluctuation. , 2010, Journal of experimental psychology. General.

[130]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[131]  Wei Lin,et al.  Wavelet Analysis and Applications , 2011 .

[132]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[133]  M. Riley,et al.  IN FRACTAL PHYSIOLOGY , 2022 .

[134]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[135]  J. Olsson,et al.  Analysis and modeling of solute transport dynamics by breakdown coefficients and random cascades , 2007 .

[136]  S. Hergarten Self-Organized Criticality in Earth Systems , 2002 .

[137]  P. Cariani Emergence of new signal-primitives in neural systems , 1997 .

[138]  L. S. Mark,et al.  Eyeheight-scaled information about affordances: a study of sitting and stair climbing. , 1987, Journal of experimental psychology. Human perception and performance.

[139]  P. N. Kugler,et al.  Information, Natural Law, and the Self-Assembly of Rhythmic Movement , 2015 .

[140]  Jan W. Kantelhardt,et al.  Multifractal moving average analysis and test of multifractal model with tuned correlations , 2011 .

[141]  M. Koonce,et al.  Dynamic microtubules in Dictyostelium , 2004, Journal of Muscle Research & Cell Motility.

[142]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[143]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[144]  Z Warhaft,et al.  Turbulence in nature and in the laboratory , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[145]  E. Mandelkow,et al.  Microtubules and microtubule-associated proteins. , 1995, Current opinion in cell biology.

[146]  G. V. van Orden,et al.  Situated Behavior and the Place of Measurement in Psychological Theory , 2010 .

[147]  Bai-Lian Li,et al.  Self-Organized Criticality , 2001 .