My dream quadrature rule

There has been a great deal of research into good algorithms for approximating multidimensional integrals. This note suggests some qualities that are desirable in a general purpose quadrature rule.

[1]  Christiane Lemieux,et al.  Efficiency improvement by lattice rules for pricing Asian options , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[2]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[3]  Art B. Owen,et al.  Variance and discrepancy with alternative scramblings , 2002 .

[4]  Henryk Wozniakowski,et al.  An intractability result for multiple integration , 1997, Math. Comput..

[5]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[6]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[7]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[8]  Fred J. Hickernell,et al.  The Price of Pessimism for Multidimensional Quadrature , 2001, J. Complex..

[9]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[10]  Alexander Keller,et al.  Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .

[11]  Fred J. Hickernell,et al.  Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..

[12]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[13]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[14]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[15]  Harald Niederreiter Constructions of (t, m, s)-Nets , 2000 .

[16]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[17]  MatoušekJiří On the L2-discrepancy for anchored boxes , 1998 .

[18]  F. J. Hickernell Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .

[19]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[20]  H. Woxniakowski Information-Based Complexity , 1988 .

[21]  K. Entacher Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .

[22]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[23]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[24]  E. Novak,et al.  Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .

[25]  Henryk Wozniakowski,et al.  Intractability Results for Integration and Discrepancy , 2001, J. Complex..

[26]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[27]  Frances Y. Kuo,et al.  Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..

[28]  Shu Tezuka,et al.  Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .

[29]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[30]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[31]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..

[32]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[33]  F. J. Hickernell Quadrature Error Bounds with Applications to Lattice Rules , 1997 .

[34]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[35]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[36]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[37]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[38]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[39]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[40]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[41]  J HickernellF,et al.  Implementing Scrambled Digital Nets , 2003 .

[42]  F. J. Hickernell,et al.  Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..

[43]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[44]  Rong-Xian Yue,et al.  On the variance of quadrature over scrambled nets and sequences , 1999 .

[45]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[46]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[47]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[48]  Harald Niederreiter,et al.  Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .

[49]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[50]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[51]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[52]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[53]  F. J. Hickernell,et al.  Uniform designs limit aliasing , 2002 .

[54]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[55]  Gerhard Larcher,et al.  Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .

[56]  Fred J. Hickernell,et al.  The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..

[57]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[58]  Rong-Xian Yue VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .

[59]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[60]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .