My dream quadrature rule
暂无分享,去创建一个
[1] Christiane Lemieux,et al. Efficiency improvement by lattice rules for pricing Asian options , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).
[2] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[3] Art B. Owen,et al. Variance and discrepancy with alternative scramblings , 2002 .
[4] Henryk Wozniakowski,et al. An intractability result for multiple integration , 1997, Math. Comput..
[5] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[6] S. Tezuka,et al. Toward real-time pricing of complex financial derivatives , 1996 .
[7] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[8] Fred J. Hickernell,et al. The Price of Pessimism for Multidimensional Quadrature , 2001, J. Complex..
[9] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[10] Alexander Keller,et al. Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .
[11] Fred J. Hickernell,et al. Optimal quadrature for Haar wavelet spaces , 2004, Math. Comput..
[12] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[13] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[14] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[15] Harald Niederreiter. Constructions of (t, m, s)-Nets , 2000 .
[16] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[17] MatoušekJiří. On the L2-discrepancy for anchored boxes , 1998 .
[18] F. J. Hickernell. Obtaining O( N - 2+∈ ) Convergence for Lattice Quadrature Rules , 2002 .
[19] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[20] H. Woxniakowski. Information-Based Complexity , 1988 .
[21] K. Entacher. Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .
[22] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[23] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[24] E. Novak,et al. Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .
[25] Henryk Wozniakowski,et al. Intractability Results for Integration and Discrepancy , 2001, J. Complex..
[26] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[27] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[28] Shu Tezuka,et al. Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .
[29] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[30] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[31] Fred J. Hickernell,et al. The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..
[32] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .
[33] F. J. Hickernell. Quadrature Error Bounds with Applications to Lattice Rules , 1997 .
[34] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[35] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[36] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[37] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[38] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .
[39] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[40] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[41] J HickernellF,et al. Implementing Scrambled Digital Nets , 2003 .
[42] F. J. Hickernell,et al. Tractability of Multivariate Integration for Periodic Functions , 2001, J. Complex..
[43] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[44] Rong-Xian Yue,et al. On the variance of quadrature over scrambled nets and sequences , 1999 .
[45] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[46] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[47] Klaus Ritter,et al. Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.
[48] Harald Niederreiter,et al. Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .
[49] V. N. Temli︠a︡kov. Approximation of functions with bounded mixed derivative , 1989 .
[50] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[51] A. Owen. THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .
[52] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[53] F. J. Hickernell,et al. Uniform designs limit aliasing , 2002 .
[54] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[55] Gerhard Larcher,et al. Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .
[56] Fred J. Hickernell,et al. The Discrepancy and Gain Coefficients of Scrambled Digital Nets , 2002, J. Complex..
[57] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[58] Rong-Xian Yue. VARIANCE OF QUADRATURE OVER SCRAMBLED UNIONS OF NETS , 1999 .
[59] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[60] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .