Decoherence of a tunable capacitively shunted flux qubit

We present a detailed study of the coherence of a tunable capacitively-shunted flux qubit, designed for coherent quantum annealing applications. The measured relaxation at the qubit symmetry point is mainly due to intrinsic flux noise in the main qubit loop for qubit frequencies below $\sim3~\text{GHz}$. At higher frequencies, thermal noise in the bias line makes a significant contribution to the relaxation, arising from the design choice to experimentally explore both fast annealing and high-frequency control. The measured dephasing rate is primarily due to intrinsic low-frequency flux noise in the two qubit loops, with additional contribution from the low-frequency noise of control electronics used for fast annealing. The flux-bias dependence of the dephasing time also reveals apparent noise correlation between the two qubit loops, possibly due to non-local sources of flux noise or junction critical-current noise. Our results are relevant for ongoing efforts toward building superconducting quantum annealers with increased coherence.

[1]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[2]  Daniel A. Lidar,et al.  Breakdown of the Weak-Coupling Limit in Quantum Annealing , 2021, Physical Review Applied.

[3]  I. Siddiqi Engineering high-coherence superconducting qubits , 2021, Nature Reviews Materials.

[4]  C. T. Earnest,et al.  Interacting defects generate stochastic fluctuations in superconducting qubits , 2021, Physical Review B.

[5]  Daniel A. Lidar,et al.  Calibration of flux crosstalk in large-scale flux-tunable superconducting quantum circuits , 2021, 2105.14360.

[6]  Daniel A. Lidar,et al.  Customized Quantum Annealing Schedules , 2021, Physical Review Applied.

[7]  Mark W. Johnson,et al.  Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets , 2021, Nature Communications.

[8]  Andrew J. Kerman,et al.  Efficient numerical simulation of complex Josephson quantum circuits , 2020, 2010.14929.

[9]  M. A. Yurtalan,et al.  Characterization of Multilevel Dynamics and Decoherence in a High-Anharmonicity Capacitively Shunted Flux Circuit , 2020, Physical Review Applied.

[10]  Daniel A. Lidar,et al.  Anneal-path correction in flux qubits , 2020, 2002.11217.

[11]  A. Melville,et al.  Characterizing and Optimizing Qubit Coherence Based on SQUID Geometry , 2020, 2002.09372.

[12]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[13]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[14]  M. W. Johnson,et al.  Demonstration of a Nonstoquastic Hamiltonian in Coupled Superconducting Flux Qubits , 2019, Physical Review Applied.

[15]  Daniel A. Lidar,et al.  A double-slit proposal for quantum annealing , 2019, npj Quantum Information.

[16]  Daniel A. Lidar,et al.  Exploring More-Coherent Quantum Annealing , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[17]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[18]  A. Wallraff,et al.  Engineering cryogenic setups for 100-qubit scale superconducting circuit systems , 2018, EPJ Quantum Technology.

[19]  V. Manucharyan,et al.  High-Coherence Fluxonium Qubit , 2018, Physical Review X.

[20]  Fei Yan,et al.  Distinguishing Coherent and Thermal Photon Noise in a Circuit Quantum Electrodynamical System. , 2018, Physical review letters.

[21]  D. Yost,et al.  3D integrated superconducting qubits , 2017, 1706.04116.

[22]  Clemens Müller,et al.  Towards understanding two-level-systems in amorphous solids: insights from quantum circuits , 2017, Reports on progress in physics. Physical Society.

[23]  D. Rosenberg,et al.  Coherent Coupled Qubits for Quantum Annealing , 2017, 1701.06544.

[24]  H. Neven,et al.  Observation of Classical-Quantum Crossover of 1/f Flux Noise and Its Paramagnetic Temperature Dependence. , 2016, Physical review letters.

[25]  J. Gambetta,et al.  Investigating Surface Loss Effects in Superconducting Transmon Qubits , 2016, IEEE Transactions on Applied Superconductivity.

[26]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[27]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[28]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[29]  Luigi Frunzio,et al.  Surface participation and dielectric loss in superconducting qubits , 2015, 1509.01854.

[30]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[31]  Daniel A. Lidar,et al.  Decoherence in adiabatic quantum computation , 2015, 1503.08767.

[32]  A. Lupascu,et al.  Dynamics of parametric fluctuations induced by quasiparticle tunneling in superconducting flux qubits , 2014, 1406.7350.

[33]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[34]  Yasunobu Nakamura,et al.  Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions , 2014, 1402.1247.

[35]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[36]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[37]  John Clarke,et al.  Heralded state preparation in a superconducting qubit. , 2012, Physical review letters.

[38]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[39]  Yasunobu Nakamura,et al.  Spectroscopy of low-frequency noise and its temperature dependence in a superconducting qubit , 2012, 1201.5665.

[40]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[41]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[42]  Yasunobu Nakamura,et al.  Noise correlations in a flux qubit with tunable tunnel coupling , 2011, 1104.5212.

[43]  M. W. Johnson,et al.  Probing high-frequency noise with macroscopic resonant tunneling , 2011, 1103.1931.

[44]  L. Bishop Circuit quantum electrodynamics , 2010, 1007.3520.

[45]  Yasunobu Nakamura,et al.  Correlated flux noise and decoherence in two inductively coupled flux qubits , 2010, 1007.1028.

[46]  Mary Beth Rothwell,et al.  High-coherence hybrid superconducting qubit. , 2010, Physical review letters.

[47]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[48]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[49]  M. W. Johnson,et al.  Geometrical dependence of the low-frequency noise in superconducting flux qubits , 2008, 0812.0378.

[50]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[51]  D. Averin,et al.  Role of single-qubit decoherence time in adiabatic quantum computation , 2008, 0803.1196.

[52]  Erik Lucero,et al.  1/f Flux noise in Josephson phase qubits. , 2007, Physical review letters.

[53]  P. Hānggi,et al.  Dissipative Landau-Zener transitions of a qubit: Bath-specific and universal behavior , 2007, cond-mat/0703596.

[54]  S. Saito,et al.  Dephasing of a superconducting flux qubit. , 2006, Physical review letters.

[55]  P. Love,et al.  Thermally assisted adiabatic quantum computation. , 2006, Physical review letters.

[56]  Daniel A. Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2006, Physical review letters.

[57]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[58]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[59]  G. Ithier,et al.  Decoherence in a superconducting quantum bit circuit , 2005, cond-mat/0508588.

[60]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[61]  S. Girvin,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2004, Physical review letters.

[62]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[63]  J. Clarke,et al.  Decoherence in Josephson-Junction Qubits due to Critical Current Fluctuations , 2004, cond-mat/0404307.

[64]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[65]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[66]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[67]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[68]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[69]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[70]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[71]  F. Bloch,et al.  Generalized Theory of Relaxation , 1957 .

[72]  C. Quintana,et al.  Superconducting flux qubits for high-connectivity quantum annealing without lossy dielectrics , 2017 .

[73]  D. McMahon Adiabatic Quantum Computation , 2008 .

[74]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[75]  G.,et al.  On the Theory of Relaxation Processes * , 2022 .