Feature Subset Selection Using a Genetic Algorithm

Practical pattern-classification and knowledge-discovery problems require the selection of a subset of attributes or features to represent the patterns to be classified. The authors' approach uses a genetic algorithm to select such subsets, achieving multicriteria optimization in terms of generalization accuracy and costs associated with the features.

[1]  Vasant Honavar Properties of Genetic Representations of Neural ArchitecturesKarthik , 1995 .

[2]  Anthony N. Mucciardi,et al.  A Comparison of Seven Techniques for Choosing Subsets of Pattern Recognition Properties , 1971, IEEE Transactions on Computers.

[3]  Vasant Honavar Machine learning: Principles and applications , 1999 .

[4]  R. E. Uhrig,et al.  Using genetic algorithms to select inputs for neural networks , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[5]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[6]  W AhaDavid,et al.  A Review and Empirical Evaluation of Feature Weighting Methods for aClass of Lazy Learning Algorithms , 1997 .

[7]  Vasant Honavar,et al.  Mobile Intelligent Agents for Document Classification and Retrieval: A Machine Learning Approach , 1998 .

[8]  Jihoon Yang,et al.  DistAl: an inter-pattern distance-based constructive learning algorithm , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[9]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[10]  H. Raiffa,et al.  Decisions with Multiple Objectives , 1993 .

[11]  Vasant G Honavar,et al.  MTiling A Constructive Neural Network Learning Algorithm for Multi Category Pattern Classi cation , 1996 .

[12]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[13]  Vasant Honavar,et al.  Toward learning systems that integrate multiple strategies and representations , 1994 .

[14]  Thomas G. Dietterich,et al.  Learning Boolean Concepts in the Presence of Many Irrelevant Features , 1994, Artif. Intell..

[15]  Richard J. Enbody,et al.  Further Research on Feature Selection and Classification Using Genetic Algorithms , 1993, ICGA.

[16]  Vasant Honavar,et al.  Generative learning structures and processes for generalized connectionist networks , 1993, Inf. Sci..

[17]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[18]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[19]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[20]  Jihoon Yang,et al.  MUpstart-a constructive neural network learning algorithm for multi-category pattern classification , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[21]  Ron Kohavi,et al.  Useful Feature Subsets and Rough Set Reducts , 1994 .

[22]  Vasant Honavar,et al.  Generative learning structures for generalized connectionist networks , 1990 .

[23]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[24]  Huan Liu,et al.  Feature Selection and Classification - A Probabilistic Wrapper Approach , 1996, IEA/AIE.

[25]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[26]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[27]  Stephen I. Gallant,et al.  Perceptron-based learning algorithms , 1990, IEEE Trans. Neural Networks.

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[29]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[30]  Huan Liu,et al.  Chi2: feature selection and discretization of numeric attributes , 1995, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence.

[31]  R. Kothari,et al.  On lateral connections in feed-forward neural networks , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[32]  Justin Doak,et al.  An evaluation of feature selection methods and their application to computer security , 1992 .

[33]  David B. Skalak,et al.  Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms , 1994, ICML.

[34]  Stephen I. Gallant,et al.  Neural network learning and expert systems , 1993 .

[35]  Pat Langley,et al.  Elements of Machine Learning , 1995 .

[36]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[37]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[38]  Ron Kohavi Feature Subset Selection as Search with Probabilistic Estimates , 1994 .

[39]  Maciej Modrzejewski,et al.  Feature Selection Using Rough Sets Theory , 1993, ECML.

[40]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[41]  Vasant Honavar,et al.  On sensor evolution in robotics , 1996 .

[42]  Rich Caruana,et al.  Greedy Attribute Selection , 1994, ICML.

[43]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[44]  Kenneth DeJong,et al.  Robust feature selection algorithms , 1993, Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93).

[45]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[46]  Marco Richeldi,et al.  Performing Effective Feature Selection by Investigating the Deep Structure of the Data , 1996, KDD.

[47]  Vasant Honavar,et al.  Power System Security Margin Prediction Using Radial Basis Function Networks , 1997 .

[48]  Wayne Niblack,et al.  A modeling approach to feature selection , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[49]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[50]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  Jihoon Yang,et al.  Constructive Neural Network Learning Algorithms , 1996, AAAI/IAAI, Vol. 2.

[52]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[53]  Peter D. Turney Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm , 1994, J. Artif. Intell. Res..

[54]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[55]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[56]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[57]  Jack Sklansky,et al.  On Automatic Feature Selection , 1988, Int. J. Pattern Recognit. Artif. Intell..

[58]  Jack Sklansky,et al.  Feature Selection for Automatic Classification of Non-Gaussian Data , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[59]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[60]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[61]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[62]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[63]  P. Langley Selection of Relevant Features in Machine Learning , 1994 .

[64]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[65]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[66]  Vasant Honavar,et al.  Analysis of Neurocontrollers Designed by Simulated Evolution , 1995 .

[67]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[68]  Donald E. Brown,et al.  Fast generic selection of features for neural network classifiers , 1992, IEEE Trans. Neural Networks.

[69]  Rajesh Parekh,et al.  Constructive Neural Network Learning Algorithms for Multi-Category Pattern Classification , 1995 .

[70]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[71]  Vasant Honavar,et al.  Properties of Genetic Representations of Neural Architectures. , 1995 .

[72]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[73]  Huan Liu,et al.  A Probabilistic Approach to Feature Selection - A Filter Solution , 1996, ICML.

[74]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[75]  Rajesh Parekh,et al.  Constructive Neural Network Learning Algorithms for Multi-Category Real-Valued Pattern Classification , 1997 .