Spectral radius of digraphs with given dichromatic number

Abstract Let D be a digraph with vertex set V ( D ) . A partition of V ( D ) into k acyclic sets is called a k -coloring of D . The minimum integer k for which there exists a k -coloring of D is the dichromatic number χ ( D ) of the digraph D . Denote G n , k the set of the digraphs of order n with the dichromatic number k ≥ 2 . In this note, we characterize the digraph which has the maximal spectral radius in G n , k . Our result generalizes the result of [8] by Feng et al.

[1]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[2]  Bojan Mohar,et al.  Eigenvalues and colorings of digraphs , 2010 .

[3]  Bojan Mohar,et al.  The circular chromatic number of a digraph , 2004, J. Graph Theory.

[4]  B. Mohar Circular colorings of edge-weighted graphs , 2003 .

[5]  Bojan Mohar,et al.  The circular chromatic number of a digraph , 2004 .

[6]  Robert Kooij,et al.  The Minimal Spectral Radius of Graphs with a Given Diameter , 2006 .

[7]  Alexandru T. Balaban,et al.  Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors , 1991, J. Chem. Inf. Comput. Sci..

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.

[10]  O. Perron Zur Theorie der Matrices , 1907 .

[11]  Huiqing Liu,et al.  Laplacian spectral bounds for clique and independence numbers of graphs , 2007, J. Comb. Theory, Ser. B.

[12]  Victor Neumann-Lara,et al.  The dichromatic number of a digraph , 1982, J. Comb. Theory, Ser. B.

[13]  Baofeng Wu,et al.  The spectral radius of trees on k pendant vertices , 2005 .

[14]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[15]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[16]  R. Brualdi Spectra of digraphs , 2010 .

[17]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[18]  Qiao Li,et al.  Spectral radii of graphs with given chromatic number , 2007, Appl. Math. Lett..