PhenomeNET: a whole-phenome approach to disease gene discovery

Phenotypes are investigated in model organisms to understand and reveal the molecular mechanisms underlying disease. Phenotype ontologies were developed to capture and compare phenotypes within the context of a single species. Recently, these ontologies were augmented with formal class definitions that may be utilized to integrate phenotypic data and enable the direct comparison of phenotypes between different species. We have developed a method to transform phenotype ontologies into a formal representation, combine phenotype ontologies with anatomy ontologies, and apply a measure of semantic similarity to construct the PhenomeNET cross-species phenotype network. We demonstrate that PhenomeNET can identify orthologous genes, genes involved in the same pathway and gene–disease associations through the comparison of mutant phenotypes. We provide evidence that the Adam19 and Fgf15 genes in mice are involved in the tetralogy of Fallot, and, using zebrafish phenotypes, propose the hypothesis that the mammalian homologs of Cx36.7 and Nkx2.5 lie in a pathway controlling cardiac morphogenesis and electrical conductivity which, when defective, cause the tetralogy of Fallot phenotype. Our method implements a whole-phenome approach toward disease gene discovery and can be applied to prioritize genes for rare and orphan diseases for which the molecular basis is unknown.

[1]  Carol A. Bocchini,et al.  A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®) , 2011, Human mutation.

[2]  Michel Dumontier,et al.  A common layer of interoperability for biomedical ontologies based on OWL EL , 2011, Bioinform..

[3]  M. Cleves,et al.  Maternal Genome-Wide DNA Methylation Patterns and Congenital Heart Defects , 2011, PloS one.

[4]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics , 2010, Nucleic Acids Res..

[5]  Paul W. Sternberg,et al.  Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community , 2011, BMC Bioinformatics.

[6]  H. Parkinson,et al.  Large scale comparison of global gene expression patterns in human and mouse , 2010, Genome Biology.

[7]  Dietrich Rebholz-Schuhmann,et al.  First Steps in the Logic-based Assessment of Post-composed Phenotypic Descriptions , 2010, SWAT4LS.

[8]  Dietrich Rebholz-Schuhmann,et al.  Interoperability between phenotype and anatomy ontologies , 2010, Bioinform..

[9]  Thomas Lengauer,et al.  Improving disease gene prioritization using the semantic similarity of Gene Ontology terms , 2010, Bioinform..

[10]  Jing Chen,et al.  PhenoHM: human–mouse comparative phenome–genome server , 2010, Nucleic Acids Res..

[11]  John M. Hancock,et al.  Phenotype ontologies for mouse and man: bridging the semantic gap , 2010, Disease Models & Mechanisms.

[12]  Axel-Cyrille Ngonga Ngomo,et al.  Applying the functional abnormality ontology pattern to anatomical functions , 2010, J. Biomed. Semant..

[13]  D. Magen,et al.  A loss-of-function mutation in NaPi-IIa and renal Fanconi's syndrome. , 2010, The New England journal of medicine.

[14]  Kriston L. McGary,et al.  Systematic discovery of nonobvious human disease models through orthologous phenotypes , 2010, Proceedings of the National Academy of Sciences.

[15]  Kara Dolinski,et al.  Saccharomyces Genome Database provides mutant phenotype data , 2009, Nucleic Acids Res..

[16]  Mouse megascience , 2010, Nature.

[17]  Cynthia L. Smith,et al.  Integrating phenotype ontologies across multiple species , 2010, Genome Biology.

[18]  Monte Westerfield,et al.  Linking Human Diseases to Animal Models Using Ontology-Based Phenotype Annotation , 2009, PLoS biology.

[19]  Yevgeny Kazakov,et al.  Consequence-Driven Reasoning for Horn SHIQ Ontologies , 2009, IJCAI.

[20]  David Osumi-Sutherland,et al.  FlyBase: enhancing Drosophila Gene Ontology annotations , 2008, Nucleic Acids Res..

[21]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[22]  Yan Zhou,et al.  Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data , 2008, BMC Bioinformatics.

[23]  Boris Motik,et al.  OWL 2: The next step for OWL , 2008, J. Web Semant..

[24]  N. Sultana,et al.  Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression , 2008, Proceedings of the National Academy of Sciences.

[25]  Ceri E. Van Slyke,et al.  The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes , 2007, Nucleic Acids Res..

[26]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[27]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[28]  Jing Chen,et al.  Improved human disease candidate gene prioritization using mouse phenotype , 2007, BMC Bioinformatics.

[29]  Steve D. M. Brown,et al.  The mouse ascending: perspectives for human-disease models , 2007, Nature Cell Biology.

[30]  Wolfgang Wurst,et al.  A New Partner for the International Knockout Mouse Consortium , 2007, Cell.

[31]  M. Oti,et al.  The modular nature of genetic diseases , 2006, Clinical genetics.

[32]  Georgi Georgiev,et al.  PhenomicDB: a new cross-species genotype/phenotype resource , 2006, Nucleic Acids Res..

[33]  Sean Bechhofer,et al.  Igniting the OWL 1.1 Touch Paper: The OWL API , 2007, OWLED.

[34]  Franz Baader,et al.  CEL - A Polynomial-Time Reasoner for Life Science Ontologies , 2006, IJCAR.

[35]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[36]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[37]  David J. Porteous,et al.  SUSPECTS : enabling fast and effective prioritization of positional candidates , 2005 .

[38]  Joshua W. Vincentz,et al.  Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract , 2005, Genesis.

[39]  Edward Malec,et al.  The expression of connexin 43 in children with Tetralogy of Fallot. , 2005, Cellular & molecular biology letters.

[40]  Mary E. Mangan,et al.  The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data , 2005, Genome Biology.

[41]  M. Ashburner,et al.  An ontology for cell types , 2005, Genome Biology.

[42]  John M. Hancock,et al.  Using ontologies to describe mouse phenotypes , 2004, Genome Biology.

[43]  Cynthia L. Smith,et al.  The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information , 2004, Genome Biology.

[44]  K. Horiuchi,et al.  Essential Role for ADAM19 in Cardiovascular Morphogenesis , 2004, Molecular and Cellular Biology.

[45]  Olivier Bodenreider,et al.  The Unified Medical Language System (UMLS): integrating biomedical terminology , 2004, Nucleic Acids Res..

[46]  José L. V. Mejino,et al.  A reference ontology for biomedical informatics: the Foundational Model of Anatomy , 2003, J. Biomed. Informatics.

[47]  S. Taffet,et al.  High Incidence of Cardiac Malformations in Connexin40-Deficient Mice , 2003, Circulation research.

[48]  Raymond Y. N. Lee,et al.  Building a Cell and Anatomy Ontology of Caenorhabditis Elegans , 2003, Comparative and functional genomics.

[49]  Minoru Kanehisa,et al.  The KEGG database. , 2002, Novartis Foundation symposium.

[50]  E. Goldmuntz,et al.  NKX2.5 Mutations in Patients With Tetralogy of Fallot , 2001, Circulation.

[51]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[52]  Dave Barker-Plummer,et al.  Language, Proof and Logic , 1999 .