Matroid optimization problems with monotone monomials in the objective

Abstract In this paper we investigate non-linear matroid optimization problems with polynomial objective functions where the monomials satisfy certain monotonicity properties. Indeed, we study problems where the set of non-linear monomials consists of all non-linear monomials that can be built from a given subset of the variables. Linearizing all non-linear monomials we study the respective polytope. We present a complete description of this polytope. Apart from linearization constraints one needs appropriately strengthened rank inequalities. The separation problem for these inequalities reduces to a submodular function minimization problem. These polyhedral results give rise to a new hierarchy for the solution of matroid optimization problems with polynomial objectives. This hierarchy allows to strengthen the relaxations of arbitrary linearized combinatorial optimization problems with polynomial objective functions and matroidal substructures. Finally, we give suggestions for future work.

[1]  Dilson Lucas Pereira,et al.  Lower bounds and exact algorithms for the quadratic minimum spanning tree problem , 2015, Comput. Oper. Res..

[2]  Christoph Buchheim,et al.  Combinatorial optimization with one quadratic term: Spanning trees and forests , 2014, Discret. Appl. Math..

[3]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[4]  Madhur Tulsiani,et al.  Convex Relaxations and Integrality Gaps , 2012 .

[5]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[6]  R. Fortet L’algebre de Boole et ses applications en recherche operationnelle , 1960 .

[7]  Anuj Mehrotra Cardinality Constrained Boolean Quadratic Polytope , 1997, Discret. Appl. Math..

[8]  Gerhard Reinelt,et al.  PANDA: a software for polyhedral transformations , 2015, EURO J. Comput. Optim..

[9]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[10]  James G. Oxley,et al.  Matroid theory , 1992 .

[11]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[12]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[13]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[14]  R. Brualdi Comments on bases in dependence structures , 1969, Bulletin of the Australian Mathematical Society.

[15]  Alain Faye,et al.  A polyhedral approach for a constrained quadratic 0-1 problem , 2005, Discret. Appl. Math..

[16]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[17]  Nair Maria Maia de Abreu,et al.  A survey for the quadratic assignment problem , 2007, Eur. J. Oper. Res..

[18]  Egon Balas,et al.  Nonlinear 0–1 programming: I. Linearization techniques , 1984, Math. Program..

[19]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[20]  Roberto Cordone,et al.  Solving the Quadratic Minimum Spanning Tree Problem , 2012, Appl. Math. Comput..

[21]  Christoph Buchheim,et al.  The spanning tree problem with one quadratic term , 2013, CTW.

[22]  S. Thomas McCormick,et al.  Matroid optimisation problems with nested non-linear monomials in the objective function , 2018, Math. Program..

[23]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[24]  Fred W. Glover,et al.  Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems , 1973, Oper. Res..

[25]  Laura Klein Combinatorial optimization with one quadratic term , 2014 .

[26]  Jesús A. De Loera,et al.  Computation in multicriteria matroid optimization , 2009, JEAL.

[27]  Giovanni Rinaldi,et al.  Efficient Reduction of Polynomial Zero-One Optimization to the Quadratic Case , 2007, SIAM J. Optim..

[28]  Alberto Del Pia,et al.  The Multilinear Polytope for Acyclic Hypergraphs , 2018, SIAM J. Optim..

[29]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[30]  Yves Crama,et al.  A class of valid inequalities for multilinear 0-1 optimization problems , 2017, Discret. Optim..

[31]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[32]  Anja Fischer,et al.  Complete description for the spanning tree problem with one linearised quadratic term , 2013, Oper. Res. Lett..

[33]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[34]  Alberto Del Pia,et al.  On decomposability of Multilinear sets , 2018, Math. Program..

[35]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[36]  Satoru Iwata,et al.  Submodular function minimization , 2007, Math. Program..

[37]  Christoph Buchheim,et al.  Berge-acyclic multilinear 0-1 optimization problems , 2019, Eur. J. Oper. Res..

[38]  Anja Fischer,et al.  An extended approach for lifting clique tree inequalities , 2015, J. Comb. Optim..

[39]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[40]  Jean B. Lasserre,et al.  An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.

[41]  Matthias Walter,et al.  Complete Description of Matching Polytopes with One Linearized Quadratic Term for Bipartite Graphs , 2016, SIAM J. Discret. Math..

[42]  Shmuel Onn,et al.  Convex Matroid Optimization , 2002, SIAM J. Discret. Math..

[43]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[44]  A. Assad,et al.  The quadratic minimum spanning tree problem , 1992 .

[45]  Janny Leung,et al.  On The Boolean Quadric Forest Polytope , 2004 .

[46]  Alberto Del Pia,et al.  A Polyhedral Study of Binary Polynomial Programs , 2017, Math. Oper. Res..

[47]  Manfred W. Padberg,et al.  Boolean polynomials and set functions , 1993 .

[48]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[49]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[50]  Frauke Liers,et al.  An exact solution method for quadratic matching: The one-quadratic-term technique and generalisations , 2015, Discret. Optim..

[51]  Adam N. Letchford,et al.  Non-convex mixed-integer nonlinear programming: A survey , 2012 .

[52]  Stanley T. Rolfe,et al.  A Comparison of the J -lntegral and CTOD Parameters for Short Crack Specimen Testing , 1991 .

[53]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems , 2005, Ann. Oper. Res..

[54]  Martin Grötschel,et al.  Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme , 1977 .

[55]  Christoph Helmberg,et al.  The symmetric quadratic traveling salesman problem , 2013, Math. Program..

[56]  Temel Öncan,et al.  The quadratic minimum spanning tree problem: A lower bounding procedure and an efficient search algorithm , 2010, Comput. Oper. Res..

[57]  Eva Riccomagno,et al.  Nonlinear Matroid Optimization and Experimental Design , 2007, SIAM J. Discret. Math..