Matroid optimization problems with monotone monomials in the objective
暂无分享,去创建一个
[1] Dilson Lucas Pereira,et al. Lower bounds and exact algorithms for the quadratic minimum spanning tree problem , 2015, Comput. Oper. Res..
[2] Christoph Buchheim,et al. Combinatorial optimization with one quadratic term: Spanning trees and forests , 2014, Discret. Appl. Math..
[3] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[4] Madhur Tulsiani,et al. Convex Relaxations and Integrality Gaps , 2012 .
[5] Jack Edmonds,et al. Matroids and the greedy algorithm , 1971, Math. Program..
[6] R. Fortet. L’algebre de Boole et ses applications en recherche operationnelle , 1960 .
[7] Anuj Mehrotra. Cardinality Constrained Boolean Quadratic Polytope , 1997, Discret. Appl. Math..
[8] Gerhard Reinelt,et al. PANDA: a software for polyhedral transformations , 2015, EURO J. Comput. Optim..
[9] Warren P. Adams,et al. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .
[10] James G. Oxley,et al. Matroid theory , 1992 .
[11] Christodoulos A. Floudas,et al. Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..
[12] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[13] Monique Laurent,et al. A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..
[14] R. Brualdi. Comments on bases in dependence structures , 1969, Bulletin of the Australian Mathematical Society.
[15] Alain Faye,et al. A polyhedral approach for a constrained quadratic 0-1 problem , 2005, Discret. Appl. Math..
[16] Endre Boros,et al. Pseudo-Boolean optimization , 2002, Discret. Appl. Math..
[17] Nair Maria Maia de Abreu,et al. A survey for the quadratic assignment problem , 2007, Eur. J. Oper. Res..
[18] Egon Balas,et al. Nonlinear 0–1 programming: I. Linearization techniques , 1984, Math. Program..
[19] Fred W. Glover,et al. Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..
[20] Roberto Cordone,et al. Solving the Quadratic Minimum Spanning Tree Problem , 2012, Appl. Math. Comput..
[21] Christoph Buchheim,et al. The spanning tree problem with one quadratic term , 2013, CTW.
[22] S. Thomas McCormick,et al. Matroid optimisation problems with nested non-linear monomials in the objective function , 2018, Math. Program..
[23] Warren P. Adams,et al. A hierarchy of relaxation between the continuous and convex hull representations , 1990 .
[24] Fred W. Glover,et al. Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems , 1973, Oper. Res..
[25] Laura Klein. Combinatorial optimization with one quadratic term , 2014 .
[26] Jesús A. De Loera,et al. Computation in multicriteria matroid optimization , 2009, JEAL.
[27] Giovanni Rinaldi,et al. Efficient Reduction of Polynomial Zero-One Optimization to the Quadratic Case , 2007, SIAM J. Optim..
[28] Alberto Del Pia,et al. The Multilinear Polytope for Acyclic Hypergraphs , 2018, SIAM J. Optim..
[29] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[30] Yves Crama,et al. A class of valid inequalities for multilinear 0-1 optimization problems , 2017, Discret. Optim..
[31] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[32] Anja Fischer,et al. Complete description for the spanning tree problem with one linearised quadratic term , 2013, Oper. Res. Lett..
[33] Jack Edmonds,et al. Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.
[34] Alberto Del Pia,et al. On decomposability of Multilinear sets , 2018, Math. Program..
[35] M. Jünger,et al. 50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .
[36] Satoru Iwata,et al. Submodular function minimization , 2007, Math. Program..
[37] Christoph Buchheim,et al. Berge-acyclic multilinear 0-1 optimization problems , 2019, Eur. J. Oper. Res..
[38] Anja Fischer,et al. An extended approach for lifting clique tree inequalities , 2015, J. Comb. Optim..
[39] Hanif D. Sherali,et al. A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..
[40] Jean B. Lasserre,et al. An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.
[41] Matthias Walter,et al. Complete Description of Matching Polytopes with One Linearized Quadratic Term for Bipartite Graphs , 2016, SIAM J. Discret. Math..
[42] Shmuel Onn,et al. Convex Matroid Optimization , 2002, SIAM J. Discret. Math..
[43] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[44] A. Assad,et al. The quadratic minimum spanning tree problem , 1992 .
[45] Janny Leung,et al. On The Boolean Quadric Forest Polytope , 2004 .
[46] Alberto Del Pia,et al. A Polyhedral Study of Binary Polynomial Programs , 2017, Math. Oper. Res..
[47] Manfred W. Padberg,et al. Boolean polynomials and set functions , 1993 .
[48] Manfred W. Padberg,et al. The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..
[49] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[50] Frauke Liers,et al. An exact solution method for quadratic matching: The one-quadratic-term technique and generalisations , 2015, Discret. Optim..
[51] Adam N. Letchford,et al. Non-convex mixed-integer nonlinear programming: A survey , 2012 .
[52] Stanley T. Rolfe,et al. A Comparison of the J -lntegral and CTOD Parameters for Short Crack Specimen Testing , 1991 .
[53] Hanif D. Sherali,et al. A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems , 2005, Ann. Oper. Res..
[54] Martin Grötschel,et al. Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme , 1977 .
[55] Christoph Helmberg,et al. The symmetric quadratic traveling salesman problem , 2013, Math. Program..
[56] Temel Öncan,et al. The quadratic minimum spanning tree problem: A lower bounding procedure and an efficient search algorithm , 2010, Comput. Oper. Res..
[57] Eva Riccomagno,et al. Nonlinear Matroid Optimization and Experimental Design , 2007, SIAM J. Discret. Math..