Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal (dSph) galaxies. For this purpose we have run a high-resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disc and it has a NFW-like dark matter (DM) halo. After 10 Gyr of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated DM haloes. We model the cleaned-up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio (M/L) and velocity anisotropy parameter. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and M/L of the dwarf with accuracy typically better than 25 per cent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy. We show that after careful removal of interlopers the velocity dispersion profile of Fornax can be reproduced by a model in which mass traces light with a M/L of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way.

[1]  Joachim Stadel,et al.  The Structural evolution of substructure , 2003 .

[2]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[3]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[4]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[5]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[6]  Interloper treatment in dynamical modelling of galaxy clusters , 2006, astro-ph/0606579.

[7]  N. Evans,et al.  New Mass Estimators For Tracer Populations , 2002, astro-ph/0210255.

[8]  A. Kravtsov,et al.  The Robustness of Dark Matter Density Profiles in Dissipationless Mergers , 2005, astro-ph/0510583.

[9]  S. White,et al.  Tidal tailspin cold dark matter cosmologies , 1999 .

[10]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[11]  E. Łokas Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND , 2001 .

[12]  Tidal tails in CDM cosmologies , 1998, astro-ph/9807320.

[13]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[14]  R. Wechsler,et al.  The Origin of Angular Momentum in Dark Matter Halos , 2001, astro-ph/0105349.

[15]  K. Johnston A Prescription for Building the Milky Way's Halo from Disrupted Satellites , 1997, astro-ph/9710007.

[16]  R. Hartog,et al.  ON THE DYNAMICS OF THE CORES OF GALAXY CLUSTERS , 1996 .

[17]  U. F. Alvensleben,et al.  Spectral and photometric evolution of simple stellar populations at various metallicities , 2002, astro-ph/0205117.

[18]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[19]  Ewa L. Łokas,et al.  Dark matter distribution in dwarf spheroidal galaxies , 2002 .

[20]  Exploring Halo Substructure with Giant Stars. I. Survey Description and Calibration of the Photometric Search Technique , 2000, astro-ph/0006411.

[21]  Dark halo properties from rotation curves , 2002, astro-ph/0201352.

[22]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[23]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[24]  Mario Mateo,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005 .

[25]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[26]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[27]  R. Wojtak,et al.  The importance of interloper removal in galaxy clusters: saving more objects for the Jeans analysis , 2006, astro-ph/0606618.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  O. Valenzuela,et al.  Dwarf Dark Matter Halos , 2003, astro-ph/0308348.

[30]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[31]  A tidal extension in the ursa minor dwarf spheroidal galaxy , 2001, astro-ph/0101456.

[32]  A. Yahil,et al.  The Velocity Distribution of Galaxies in Clusters , 1977 .

[33]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[34]  Gary A. Mamon,et al.  Dark matter distribution in the Draco dwarf from velocity moments , 2004, astro-ph/0411694.

[35]  About the morphology of dwarf spheroidal galaxies and their dark matter content , 2002, astro-ph/0207467.

[36]  K. Freeman,et al.  A Wide-Field Survey of the Fornax Dwarf Spheroidal Galaxy , 2004, astro-ph/0412196.

[37]  G. Mamon,et al.  Mass Profiles and Shapes of Cosmological Structures , 2005 .

[38]  Kathryn V. Johnston,et al.  Measuring mass-loss rates from Galactic satellites , 1998 .

[39]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[40]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[41]  Dark matter in elliptical galaxies — II. Estimating the mass within the virial radius , 2004, astro-ph/0405491.

[42]  Joachim Stadel,et al.  Tidal debris of dwarf spheroidals as a probe of structure formation models , 2001, astro-ph/0110386.

[43]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. XI. The Tidal Tails of the Carina Dwarf Spheroidal Galaxy and the Discovery of Magellanic Cloud Stars in the Carina Foreground , 2006, astro-ph/0605098.

[44]  The specific entropy of elliptical galaxies: an explanation for profile‐shape distance indicators? , 1999, astro-ph/9905048.

[45]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[46]  L. Hernquist,et al.  N-body realizations of compound galaxies , 1993 .

[47]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[48]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[49]  L. Mayer,et al.  Early gas stripping as the origin of the darkest galaxies in the Universe , 2007, Nature.

[50]  N. Wyn Evans,et al.  The importance of tides for the Local Group dwarf spheroidals , 2006 .

[51]  Joachim Stadel,et al.  Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas , 2005, astro-ph/0504277.

[52]  S. Tremaine,et al.  Estimating the masses of galaxy groups: alternatives to the virial theorem , 1985 .

[53]  Exploring Halo Substructure with Giant Stars. II. Mapping the Extended Structure of the Carina Dwarf Spheroidal Galaxy , 1999, astro-ph/9911191.