The Wigner-Dyson-Mehta Bulk Universality Conjecture for Wigner Matrices

A well known conjecture of Wigner, Dyson, and Mehta asserts that the (appropriately normalized) $k$-point correlation functions of the eigenvalues of random $n \times n$ Wigner matrices in the bulk of the spectrum converge (in various senses) to the $k$-point correlation function of the Dyson sine process in the asymptotic limit $n\to\infty$. There has been much recent progress on this conjecture; in particular, it has been established under a wide variety of decay, regularity, and moment hypotheses on the underlying atom distribution of the Wigner ensemble, and using various notions of convergence. Building upon these previous results, we establish new instances of this conjecture with weaker hypotheses on the atom distribution and stronger notions of convergence. In particular, assuming only a finite moment condition on the atom distribution, we can obtain convergence in the vague sense, and assuming an additional regularity condition, we can upgrade this convergence to locally $L^1$ convergence. As an application, we determine the limiting distribution of the number of eigenvalues $N_I$ in a short interval $I$ of length $\Theta (1/n)$. As a corollary of this result, we obtain an extension of a result of Jimbo et. al. concerning the behavior of spacing in the bulk.

[1]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[2]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[3]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[4]  E. Brezin,et al.  Extension of level-spacing universality , 1997 .

[5]  L. Pastur On the spectrum of random matrices , 1972 .

[6]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[7]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[8]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[9]  Universality for certain Hermitian Wigner Matrices under weak moment conditions , 2009, 0910.4467.

[10]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[11]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[12]  Van Vu,et al.  A note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner Matrices , 2011 .

[13]  A. Soshnikov,et al.  A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices , 1998 .

[14]  B. Schlein,et al.  Average density of states for Hermitian Wigner matrices , 2010, 1011.5594.

[15]  Alexander Soshnikov,et al.  Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .

[16]  L. Erdős Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.

[17]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[18]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[19]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[20]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[21]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[22]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[23]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[24]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[25]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[26]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[27]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[28]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.