MONTE CARLO SIMULATIONS OF THE EFFECT OF PRESSURE ON ISOTHERMAL AND TEMPERATURE-PROGRAMMED DESORPTION KINETICS

Abstract A Monte Carlo simulation technique is presented for describing the adsorption, surface diffusion, and desorption kinetics of molecules from metal surfaces. Lateral interactions between adsorbed molecules are taken into account using the bond-order-conservation-Morse-potential method. The rate of desorption observed in the presence of a gas-phase species is higher than that observed in a vacuum. The increase in the apparent rate coefficient for desorption with increasing pressure can be ascribed to the effects of repulsive lateral interactions on the activation energy for desorption. The simulated kinetics are in good agreement with the experimentally-observed kinetics for the isothermal desorption of CO from polycrystalline Pd and for the temperature-programmed desorption of CO from Ni(100).

[1]  P. Kisuuk,et al.  The sticking probabilities of gases chemisorbed on the surfaces of solids—II , 1958 .

[2]  J. D. Beckerle,et al.  Summary Abstract: Collision induced dissociation and desorption: CH4 and CO on Ni (111) , 1988 .

[3]  M. Kiskinova,et al.  Electron-stimulated and thermal desorption studies on palladium: II. Carbon monoxide , 1980 .

[4]  M. Hove,et al.  Adsorption of CO on Pd(100) , 1980 .

[5]  G. Ertl,et al.  Adsorption of CO on Pd single crystal surfaces , 1974 .

[6]  H. Steinrück,et al.  Precursors and trapping in the molecular chemisorption of CO on Ni(100) , 1987 .

[7]  Johnson,et al.  Observation and mechanism of collision-induced desorption: CH4 on Ni(111). , 1989, Physical review letters.

[8]  P. Kisliuk The sticking probabilities of gases chemisorbed on the surfaces of solids , 1957 .

[9]  J. Yates,et al.  Carbon monoxide chemisorption on Ni(100)—direct detection of adsorbate-adsorbate interactions by desorption kinetic measurements , 1980 .

[10]  L. Schmidt,et al.  Interaction of H2 with (100)W. II. Condensation , 1970 .

[11]  J. Benziger,et al.  The decomposition of formic acid on Ni(100) , 1979 .

[12]  H. Leidheiser,et al.  Chemisorption of Carbon Monoxide on (110) and (100) Nickel Crystal Faces , 1970 .

[13]  J. C. Tracy,et al.  Structural Influences on Adsorption Energy. III. CO on Cu(100) , 1972 .

[14]  G. Mitchell,et al.  Vibrational spectra of coadsorbed CO and H on Ni(100) and Ni(111) , 1983 .

[15]  Taro Yamada,et al.  Adsorption−desorption kinetics of carbon monoxide on Ru(0001) and Ru(21122) single crystal surfaces , 1984 .

[16]  Alexis T. Bell,et al.  Monte carlo simulation of temperature-programmed desorption of coadsorbed species , 1989 .

[17]  Y. Iwasawa,et al.  Adsorption-desorption kinetics of carbon monoxide on a palladium (100) single crystal surface modified with sulfur , 1988 .

[18]  Tatsuo Matsushima,et al.  Tracer studies of the reaction paths of the CO oxidation over polycrystalline palladium and rhodium , 1980 .

[19]  T. Onishi,et al.  Reply to ``adsorption-assisted desorption — Reality or fiction?'' by V.P. Zhdanov , 1985 .

[20]  P. W. Palmberg,et al.  Structural Influences on Adsorbate Binding Energy. I. Carbon Monoxide on (100) Palladium , 1969 .

[21]  G. Ertl,et al.  Adsorption of CO on a Ni(111) surface , 1974 .

[22]  B. Koel,et al.  Low temperature coadsorption of hydrogen and carbon monoxide on Ni(100) , 1983 .

[23]  Alexis T. Bell,et al.  A monte carlo model for the simulation of temperature-programmed desorption spectra , 1988 .

[24]  A. Bradshaw,et al.  The chemisorption of carbon monoxide on palladium single crystal surfaces: IR spectroscopic evidence for localised site adsorption , 1978 .

[25]  E. Shustorovich Chemisorption phenomena: Analytic modeling based on perturbation theory and bond-order conservation , 1986 .

[26]  Taro Yamada,et al.  The isotope exchange reaction of carbon monoxide on rhodium polycrystalline surfaces , 1984 .

[27]  Taro Yamada,et al.  Adsorption-desorption kinetics of carbon monoxide on rhodium polycrystalline surfaces , 1983 .