Low Degree Euclidean and Minkowski Pythagorean Hodograph Curves

In our contribution we study cubic and quintic Pythagorean Hodograph (PH) curves in the Euclidean and Minkowski planes. We analyze their control polygons and give necessary and sufficient conditions for cubic and quintic curves to be PH. In the case of Euclidean cubics the conditions are known and we provide a new proof. For the case of Minkowski cubics we formulate and prove a new simple geometrical condition. We also give conditions for the control polygons of quintics in both types of planes. Moreover, we introduce the new notion of the preimage of a transformation, which is closely connected to the so-called preimage of a PH curve. We determine which transformations of the preimage curves produce similarities of PH curves in both Euclidean and Minkowski plane. Using these preimages of transformations we provide simple proofs of the known facts that up to similarities there exists only one Euclidean PH cubic (the so-called Tschirnhausen cubic) and two Minkowski PH cubics. Eventually, with the help of this novel approach we classify and describe the systems of Euclidean and Minkowski PH quintics.

[1]  Chung-Nim Lee,et al.  Geometry of root-related parameters of PH curves , 2003, Appl. Math. Lett..

[2]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[3]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[4]  Hwan Pyo Moon,et al.  Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..

[5]  K. K. Kubota Pythagorean Triples in Unique Factorization Domains , 1972 .

[6]  Hyeong In Choi,et al.  Clifford algebra, Lorentzian geometry, and rational parametrization of canal surfaces , 2004, Comput. Aided Geom. Des..

[7]  Bert Jüttler,et al.  C HERMITE INTERPOLATION BY PYTHAGOREAN HODOGRAPH SPACE CURVES , 2007 .

[8]  Rida T. Farouki,et al.  Construction and shape analysis of PH quintic Hermite interpolants , 2001, Comput. Aided Geom. Des..

[9]  Bert Jüttler,et al.  C1 Hermite interpolation by Pythagorean hodograph quintics in Minkowski space , 2009, Adv. Comput. Math..

[10]  D. Walton,et al.  Geometric Hermite interpolation with Tschirnhausen cubics , 1997 .

[11]  Helmut Pottmann,et al.  Applications of Laguerre geometry in CAGD , 1998, Comput. Aided Geom. Des..

[12]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[13]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[14]  Hyeong In Choi,et al.  Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..

[15]  Bert Jüttler,et al.  Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling , 1999, Comput. Aided Des..

[16]  Martin Aigner,et al.  Evolution-based least-squares fitting using Pythagorean hodograph spline curves , 2007, Comput. Aided Geom. Des..

[17]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves , 2002, Handbook of Computer Aided Geometric Design.

[18]  Bert Jüttler,et al.  Euclidean and Minkowski Pythagorean hodograph curves over planar cubics , 2005, Comput. Aided Geom. Des..

[19]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[20]  Gwang-Il Kim,et al.  C1 Hermite interpolation using MPH quartic , 2003, Comput. Aided Geom. Des..

[21]  Hwan Pyo Moon Minkowski Pythagorean hodographs , 1999, Comput. Aided Geom. Des..

[22]  Bert Jüttler,et al.  Cubic helices in Minkowski space , 2006 .

[23]  Bert Jüttler,et al.  Hermite interpolation by Pythagorean hodograph curves of degree seven , 2001, Math. Comput..

[24]  Carla Manni,et al.  Spatial C^2 PH quintic splines , 2003 .

[25]  Bert Jüttler,et al.  G1 Hermite interpolation by Minkowski Pythagorean hodograph cubics , 2006, Comput. Aided Geom. Des..

[26]  Dereck S. Meek,et al.  G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments , 2007, Comput. Aided Geom. Des..

[27]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[28]  Rida T. Farouki,et al.  Structural invariance of spatial Pythagorean hodographs , 2002, Comput. Aided Geom. Des..

[29]  K. Saitou,et al.  Least squares tool path approximation with Pythagorean hodograph curves for high speed CNC machining , 2002 .

[30]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[31]  R. Farouki,et al.  DESIGN OF RATIONAL CAM PROFILES WITH PYTHAGOREAN-HODOGRAPH CURVES , 1998 .

[32]  Kyeong Hah Roh,et al.  Medial axis transform and offset curves by Minkowski Pythagorean hodograph curves , 1999, Comput. Aided Des..

[33]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .