A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation

In this paper, we study finite element approximations of the viscosity solution of the fully nonlinear Monge-Ampère equation, det(D2u) = f (> 0) using the well-known nonconforming Morley element. Our approach is based on the vanishing moment method, which was recently proposed as a constructive way to approximate fully nonlinear second order equations by the author and Feng (J Sci Comput 38(1):74–98, 2009). The vanishing moment method approximates the Monge-Ampère equation by the fourth order quasilinear equation $${-\epsilon\Delta^2u^\epsilon + {\rm det}(D^2u^\epsilon) = f}$$ with appropriate boundary conditions. We develop a finite element scheme using the n-dimensional Morley element introduced in Wang and Xu (Numer Math 103:155–169, 2006) to approximate the regularized fourth order problem in two and three dimensions, and then derive optimal order error estimates.

[1]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[2]  Yann Brenier,et al.  Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..

[3]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[4]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Xiaobing Feng,et al.  Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations , 2009, J. Sci. Comput..

[7]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[8]  C. E. Gutiérrez,et al.  Properties of the solutions of the linearized Monge-Ampère equation , 1997 .

[9]  Xiaobing Feng,et al.  Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations , 2007, 0708.1758.

[10]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[11]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[12]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[13]  Yuan-Ming Wang,et al.  Time-Delayed finite difference reaction-diffusion systems with nonquasimonotone functions , 2006, Numerische Mathematik.

[14]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[15]  Wang Ming,et al.  The Morley element for fourth order elliptic equations in any dimensions , 2006, Numerische Mathematik.

[16]  H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .

[17]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Xiaobing Feng,et al.  Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation , 2007, J. Sci. Comput..

[20]  Mario Milman,et al.  Monge Ampère equation : applications to geometry and optimization : NSF-CBMS Conference on the Monge Ampère Equation : Applications to Geometry and Optimization, July 9-13, 1997, Florida Atlantic University , 1999 .

[21]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[22]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[23]  Xiaobing Feng,et al.  A Modified Characteristic Finite Element Method for a Fully Nonlinear Formulation of the Semigeostrophic Flow Equations , 2008, SIAM J. Numer. Anal..

[24]  Sy Cheng,et al.  REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) , 1977 .

[25]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[26]  Shing-Tung Yau,et al.  On the regularity of the monge‐ampère equation det (∂2 u/∂xi ∂xj) = f(x, u) , 1977 .

[27]  G. Loeper,et al.  A Fully Nonlinear Version of the Incompressible Euler Equations: The Semigeostrophic System , 2006, SIAM J. Math. Anal..