Qualitative analysis of a ratio-dependent Holling-Tanner model

Abstract In this paper, we consider a Holling–Tanner system with ratio-dependence. First, we establish the sufficient conditions for the global stability of positive equilibrium by constructing Lyapunov function. Second, through a simple change of variables, we transform the ratio-dependent Holling–Tanner model into a better studied Lienard equation. As a result, the uniqueness of limit cycle can be solved.

[1]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[2]  P. Hartman Ordinary Differential Equations , 1965 .

[3]  R. Arditi,et al.  Functional responses and heterogeneities: an experimental test with cladocerans , 1991 .

[4]  R. Arditi,et al.  Variation in Plankton Densities Among Lakes: A Case for Ratio-Dependent Predation Models , 1991, The American Naturalist.

[5]  Joan Torregrosa,et al.  Limit cycles in the Holling-Tanner model , 1997 .

[6]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[7]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[8]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[9]  Sanyi Tang,et al.  Global Qualitative Analysis for a Ratio-Dependent Predator–Prey Model with Delay☆☆☆ , 2002 .

[10]  M. A. Aziz-Alaoui,et al.  Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes , 2003, Appl. Math. Lett..

[11]  W. A. Coppel,et al.  A new class of quadratic systems , 1991 .

[12]  Andrei Korobeinikov,et al.  A Lyapunov function for Leslie-Gower predator-prey models , 2001, Appl. Math. Lett..

[13]  R. May,et al.  STABILITY IN INSECT HOST-PARASITE MODELS , 1973 .

[14]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[15]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[16]  J. Gower,et al.  The properties of a stochastic model for the predator-prey type of interaction between two species , 1960 .

[17]  Rui Xu,et al.  Persistence and global stability for n-species ratio-dependent predator–prey system with time delays , 2002 .

[18]  E. C. Pielou,et al.  An introduction to mathematical ecology , 1970 .

[19]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[20]  R. Arditi,et al.  Empirical Evidence of the Role of Heterogeneity in Ratio‐Dependent Consumption , 1993 .

[21]  A. Gutierrez Physiological Basis of Ratio-Dependent Predator-Prey Theory: The Metabolic Pool Model as a Paradigm , 1992 .

[22]  Eduardo Sáez,et al.  Dynamics of a Predator-Prey Model , 1999, SIAM J. Appl. Math..

[23]  Y. Kuang,et al.  Global analyses in some delayed ratio-dependent predator-prey systems , 1998 .