Modal restriction Semigroups: towards an Algebra of Functions

Restriction semigroups model algebras of partial maps under composition and domain. Here we consider restriction semigroups for which the usual Boolean operations on domains are modeled. Such algebras are capable of modeling the usual modal operators considered in dynamic logic. Indeed adding a natural functional variant of union to the signature gives a deterministic version of the modal semirings of Moller and Struth, but also a monoidal version of the classical restriction categories of Cockett and Manes. Other operations modeled are intersection and (in the finite case) functional iteration. In each case, axiomatizations of the concrete functional examples are given, leading to algebraic models of partial maps incorporating all the domain-related and set-theoretic operations previously considered. Our algebras furnish natural algebraic semantics for the logics of deterministic computer programs, leading to new results for some variants of propositional dynamic logic.

[1]  M. Lawson Semigroups and Ordered Categories. I. The Reduced Case , 1991 .

[2]  Robin Hirsch,et al.  Representability is not decidable for finite relation algebras , 1999 .

[3]  Timothy Stokes,et al.  Varieties of Equality Structures , 2003, Int. J. Algebra Comput..

[4]  A. Ursini On subtractive varieties, I , 1994 .

[5]  Christopher D. Hollings,et al.  PARTIAL ACTIONS OF INVERSE AND WEAKLY LEFT E-AMPLE SEMIGROUPS , 2009, Journal of the Australian Mathematical Society.

[6]  Carsten Lutz,et al.  2-Exp Time lower bounds for propositional dynamic logics with intersection , 2005, Journal of Symbolic Logic.

[7]  J. Robin B. Cockett,et al.  Boolean and classical restriction categories , 2009, Mathematical Structures in Computer Science.

[8]  Karl Menger An Axiomatic Theory of Functions and Fluents , 2003 .

[9]  E. Manes Guarded and Banded Semigroups , 2006 .

[10]  Generalising congruence regularity for varieties , 2002 .

[11]  J. Robin B. Cockett,et al.  Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..

[12]  Gracinda M. S. Gomes,et al.  Proper Weakly Left AMPLE Semigroups , 1999, Int. J. Algebra Comput..

[13]  David M. Clark,et al.  Standard topological algebras: syntactic and principal congruences and profiniteness , 2005 .

[14]  Marcel Jackson,et al.  An Invitation to C-semigroups , 2001 .

[15]  Dexter Kozen,et al.  A Representation Theorem for Models of *-Free PDL , 1980, ICALP.

[16]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[17]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[18]  Vaughan R. Pratt,et al.  Dynamic algebras as a well-behaved fragment of relation algebras , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[19]  Mailbox¶Generalising congruence regularity for varieties , 2002 .

[20]  Marcel Jackson,et al.  SEMIGROUPS WITH if-then-else AND HALTING PROGRAMS , 2009, Int. J. Algebra Comput..

[21]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[22]  Mordechai Ben-Ari,et al.  Deterministic Propositional Dynamic Logic: Finite Models, Complexity, and Completeness , 1982, J. Comput. Syst. Sci..

[23]  Pascal Weil,et al.  Relatively Free Profinite Monoids: An Introduction and Examples , 1995 .

[24]  B. CockettJ.R.,et al.  Restriction categories I , 2002 .

[25]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[26]  Algebras of multiplace functions , 2012 .

[27]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[28]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[29]  Marcel Jackson,et al.  Identities in the Algebra of Partial Maps , 2006, Int. J. Algebra Comput..

[30]  Ryszard Danecki,et al.  Nondeterministic Propositional Dynamic Logic with intersection is decidable , 1984, Symposium on Computation Theory.

[31]  D. Harel Recurring dominoes: making the highly undecidable highly understandable , 1985 .

[32]  Georg Struth,et al.  Algebras of modal operators and partial correctness , 2006, Theor. Comput. Sci..

[33]  Marcel Jackson,et al.  Semilattice Pseudo-complements on Semigroups , 2004 .

[34]  Dexter Kozen,et al.  On the Representation of Kleene Algebras with Tests , 2006, MFCS.

[35]  Dejan Delic Solution to A Problem of Kublanovsky and Sapir , 2001, Int. J. Algebra Comput..

[36]  Dimiter Vakarelov,et al.  PDL with intersection of programs: a complete axiomatization , 2003, J. Appl. Non Class. Logics.

[37]  Dexter Kozen,et al.  On the Complexity of the Horn Theory of REL , 2003 .

[38]  A. Ursini,et al.  Ideals in universal algebras , 1984 .

[39]  Tim E. Stokes On EQ-monoids , 2006 .

[40]  On profiniteness of compact totally disconnected algebras , 1979, Bulletin of the Australian Mathematical Society.

[41]  David Harel,et al.  Recurring Dominoes: Making the Highly Undecidable Highly Understandable (Preliminary Report) , 1983, FCT.

[42]  Robert Goldblatt The semantics of Hoare's Iteration Rule , 1982 .

[43]  Joseph Y. Halpern,et al.  The prepositional dynamic logic of deterministic, well-structured programs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[44]  Boris M. Schein,et al.  Relation algebras and function semigroups , 1970 .

[45]  Dexter Kozen On Hoare logic and Kleene algebra with tests , 2000, TOCL.

[46]  Marcel Jackson,et al.  Partial Maps with Domain and Range: Extending Schein's Representation , 2009 .

[47]  Georg Struth,et al.  Kleene algebra with domain , 2003, TOCL.

[48]  Victoria Gould,et al.  Restriction Semigroups and Inductive Constellations , 2009 .

[49]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.