Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC)

The overall objective of NERI Project Number 99-0198 is to assess the technical and economic feasibility, develop engineering solutions and determine a range of potential applications for ''Novel Integrated Reactor/Energy conversion Systems''. The near term goal is the design of a power supply for developing countries in remote locations in a proliferation resistant, reliable and economical way. The heart of the concept is the use of a single loop liquid metal fast reactor (LMR) with conversion of the heat directly into electricity in a Alkali Metal Thermal to Electric Converter (AMTEC). The first year of the project focused on the feasibility issues with a long life, high temperature liquid metal-cooled core; selection of the working fluid, core-to-AMTEC coupling scheme and interface parameters; and, energy conversion systems design and performance. Report Number STD-ES-01-0028, Revision 0, dated July 31, 2001, summarizes the work performed by Westinghouse personnel in Year One and report number UNM-ISNPS-3-2000, dated October 2000, summarizes the work performed by the Institute for Space and Nuclear Power Studies at the University of New Mexico in Year One.

[1]  Mohamed S. El-Genk,et al.  Performance comparison of potassium and sodium vapor anode, multi-tube AMTEC converters , 2002 .

[2]  Margaret A. K. Ryan,et al.  The thermal stability of sodium beta″-Alumina solid electrolyte ceramic in AMTEC cells , 1999 .

[3]  N. B. Vargaftik Tables on the thermophysical properties of liquids and gases: In normal and dissociated states , 1975 .

[4]  Margaret A. K. Ryan,et al.  Lifetimes of AMTEC electrodes: Molybdenum, rhodium-tungsten, and titanium nitride , 2001 .

[5]  Sanborn C. Brown,et al.  Introduction to Electrical Discharges in Gases , 1968 .

[6]  M. El-Genk,et al.  A review of refractory materials for vapor-anode AMTEC cells , 2001 .

[7]  David Buden,et al.  Space nuclear power , 1985 .

[8]  G. Farrington,et al.  Ionic conductivity in Na+, K+, and Ag+ β″-alumina , 1980 .

[9]  Mohamed S. El-Genk,et al.  Analysis of test results of a ground demonstration of a Pluto/Express power generator , 1999 .

[10]  Margaret A. K. Ryan,et al.  The Thermal Decomposition of Sodium Beta-Alumina Solid Electrolyte Ceramic , 1998 .

[11]  Mohamed S. El-Genk,et al.  A performance comparison of SiGe and skutterudite based segmented thermoelectric devices , 2002 .

[12]  Robert W. Fletcher,et al.  Recent Developments in Mixed Ionic and Electronic Conducting Electrodes for the Alkali Metal Thermal Electric Converter (AMTEC) , 2003 .

[13]  M. El-Genk,et al.  Thermal conductivity measurements of alumina powders and molded Min-K in vacuum , 2001 .

[14]  D. Fehrs,et al.  Contact potential measurements of the adsorption of alkali metals on Ta(llO) and W(100) crystals , 1971 .

[15]  A. Amorosi,et al.  Fast reactor technology : plant design , 1966 .

[16]  R. Knödler,et al.  Porous TiB2 electrodes for the alkali metal thermoelectric convertor , 1992 .

[17]  Edward K. Levy Optimum Plate Spacings for Laminar Natural Convection Heat Transfer From Parallel Vertical Isothermal Flat Plates , 1971 .

[18]  Albert B. Reynolds,et al.  Fast breeder reactors , 1981 .

[19]  J. S. Marshall,et al.  Kinetic Theory of Gases , 1967 .

[20]  D. L. Alger,et al.  Some corrosion failure mechanisms of AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[21]  Osamu Miyatake,et al.  Comparative study of flash evaporation rates , 1994 .

[22]  Margaret A. K. Ryan,et al.  Advances in electrode materials for AMTEC , 2001 .

[23]  R. Ewell,et al.  Experimental and Systems Studies of the Alkali Metal Thermoelectric Converter for Aerospace Power , 1983 .

[24]  M. Ishida,et al.  Sodium-immersed self-cooled electromagnetic pump design and development of a large-scale coil for high temperature , 1995 .

[25]  Mohamed S. El-Genk,et al.  Review of Refractory Materials for Alkali Metal Thermal-to-Electric Conversion Cells , 2001 .

[26]  J. Kummer β-Alumina electrolytes , 1972 .

[27]  Akira Yamada,et al.  Performance of the Terrestrial Power Generation Plant Using the Alkali Metal Thermo-Electric Conversion (AMTEC) , 1992 .

[28]  C. Bankston,et al.  Progress in AMTEC electrode experiments and modeling , 1988 .

[29]  R. H. Cortez,et al.  The Sodium Exposure Test Cell to determine operating parameters for AMTEC electrochemical cells , 1998 .

[30]  Robert K. Sievers,et al.  Update of the design of the AMTEC converter for use in AMTEC Radioisotope Power Systems , 2001 .

[31]  R. K. Sievers,et al.  High Power Density Alkali Metal Thermal To Electric Converter , 1990, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference.

[32]  J. W. Wilson,et al.  Behaviour and Properties of Refractory Metals , 1965 .

[33]  Mohamed S. El-Genk,et al.  High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion , 2002 .

[34]  K. Tsuchida,et al.  Characteristics of Ceramic Electrode for AMTEC , 1992 .

[35]  T. Kamins Electrical Properties of Cesium Adsorbed on Insulating Substrates , 1968 .

[36]  T. Cole,et al.  Thermoelectric Energy Conversion with Solid Electrolytes , 1983, Science.

[37]  A. Virkar,et al.  Wetting characteristics of sodium on β″-alumina and on nasicon , 1982 .

[38]  Mohamed S. El-Genk,et al.  An investigation of breakdown voltage in AMTECs , 2002 .

[39]  John R. Howell,et al.  A catalog of radiation configuration factors , 1982 .

[40]  M. L. Underwood,et al.  Performance projections of alternative AMTEC systems and devices , 1991 .

[41]  D. R. Nicholls Status of the pebble bed modular reactor , 2000 .

[42]  Jean-Pierre Fleurial,et al.  High efficiency segmented thermoelectric unicouples , 2001 .

[43]  G. M. Crosbie,et al.  Potassium Beta''‐Alumina Membranes , 1982 .

[44]  Christopher J. Crowley,et al.  Vacuum testing of high efficiency AMTEC cells , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[45]  Mohamed S. El-Genk,et al.  Performance analyses of an Nb–1Zr/C-103 vapor anode multi-tube alkali-metal thermal-to-electric conversion cell , 2001 .

[46]  Michael G. Izenson,et al.  Condensation of sodium on a micromachined surface for AMTEC , 1993 .

[47]  Mohamed S. El-Genk,et al.  Analysis of a vapor anode, multi-tube, potassium refractory AMTEC converter for space applications , 2001 .

[48]  Donald Peckner,et al.  Book Review: Handbook of Stainless Steels , 1978 .

[49]  T. Sakai Surface Electrical Resistivity of Aluminum Oxide Ceramics in Cesium Vapor , 1977 .

[50]  G. A. Johnson The Alkali Metal Thermoelectric Converter (AMTEC) Radioisotope Thermoelectric Generator (RTG) , 1992 .

[51]  T. Konishi,et al.  Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants , 2002 .

[52]  A. Thakoor,et al.  Alkali Metal Thermoelectric Conversion (AMTEC) for space nuclear power systems , 1985 .

[53]  G. P. Peterson,et al.  An Introduction to Heat Pipes: Modeling, Testing, and Applications , 1994 .

[54]  L. D. Chitwood,et al.  Oxidation of Mo-Re at reduced oxygen pressures , 2001 .

[55]  Mohamed S. El-Genk,et al.  A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state , 1996 .

[56]  D. R. Nicholls,et al.  The Pebble Bed Modular Reactor , 2001 .

[57]  George N. Hatsopoulos,et al.  Thermionic energy conversion , 1966 .

[58]  R. W. Evans,et al.  Introduction to Creep , 1993 .

[59]  S. W. Chi,et al.  Heat pipe theory and practice : a sourcebook , 1976 .

[60]  T. Hendricks,et al.  AMTEC Internal Self-Heat Pipe , 1999 .

[61]  A.G. Kalandarishvili Working medium circuit for alkali metal thermal-to-electric converters (AMTEC) , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[62]  S. L. Soo Direct Energy Conversion , 1968 .

[64]  Mohamed S. El-Genk,et al.  Experimental Investigations, Modeling, and Analyses of High-Temperature Devices for Space Applications. Part 1 , 1999 .

[65]  Akio Kato,et al.  Materials for electrode of alkali metal thermoelectric converter (AMTEC) (II) , 1990 .

[66]  Mohamed S. El-Genk,et al.  Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants , 2002 .

[67]  W. Elenbaas Heat dissipation of parallel plates by free convection , 1942 .

[68]  C. P. Bankston,et al.  Kinetics and transport at AMTEC electrodes. II - Temperature dependence of the interfacial impedance of Na(g)/porous Mo/Na-Beta-double prime alumina , 1990 .

[69]  Ryan,et al.  Sodium Transport Modes in AMTEC Electrodes , 1998 .

[70]  Hiroshi Kikuchi,et al.  Fundamental Study on the Terrestrial Power Generation Plant Using the Alkali Metal Thermo-Electric Conversion (AMTEC) , 1992 .

[71]  T. K. Hunt,et al.  Solar residential total energy system using the sodium heat engine - A concept study , 1982 .

[72]  L. C. Walters,et al.  Thirty years of fuels and materials information from EBR-II , 1999 .

[73]  Alfred Schock,et al.  Recommended OSC design and analysis of AMTEC power system for outer-planet missions , 1999 .

[74]  R. C. Svedberg,et al.  Accelerated testing for extended service AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[75]  Mohamed S. El-Genk,et al.  Capillary Limit of Evaporator Wick in Alkali Metal Thermal-to-Electric Converters , 2002 .

[76]  M. M. Osterhout Control of oxygen, hydrogen, and tritium in sodium systems at Experimental Breeder Reactor II , 1980 .

[78]  Terry J. Hendricks,et al.  AMTEC Cell Optimization for Advanced Radioisotope Power System (ARPS) Design , 1999 .

[79]  A. Barkan,et al.  Potassium AMTEC Cell Performance , 1999 .

[80]  S. E. Mayer,et al.  Use of high temperature thermoelectric materials (silicides) for power generation in space. [CoSi and (CrMn)Si/sub 2/] , 1961 .

[81]  Joseph F. Ivanenok,et al.  High voltage terrestrial AMTEC , 1994 .

[82]  W. H. Olson,et al.  Sodium Purification by Cold Trapping at the Experimental Breeder Reactor II , 1977 .

[83]  Mohamed S. El-Genk,et al.  Performance optimization of Segmented Thermoelectric Unicouples , 2002 .

[84]  W. D. Wilkinson Properties of Refractory Metals , 1969 .

[85]  A. Thakoor,et al.  The Role of Oxygen in Porous Molybdenum Electrodes for the Alkali Metal Thermoelectric Converter , 1986 .

[86]  M.S. El-Genk,et al.  Vacuum testing of high efficiency multi-base tube AMTEC cells , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[87]  Amir Faghri,et al.  Heat Pipe Science And Technology , 1995 .

[88]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[89]  C. P. Bankston,et al.  Kinetics and transport at AMTEC electrodes. I - The interfacial impedance model. [alkali metal thermoelectric converters] , 1990 .

[90]  N. Dudney,et al.  Solid electrolytes—the beta aluminas , 1982 .

[91]  Neill Weber,et al.  A thermoelectric device based on beta-alumina solid electrolyte , 1974 .

[92]  L. B. Lundberg,et al.  Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes , 1981 .

[93]  M. Ryan,et al.  Advances in materials and current collecting networks for AMTEC electrodes , 1992 .

[94]  T. K. Hunt Test Results On A Kilowatt-scale Sodium Heat Engine , 1990, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference.

[95]  Richard B. Zipin,et al.  Electrical Phenomena in Gases , 1967 .

[96]  G. Ault A decade of progress in refractory metals. , 1965 .