Recommending Users: Whom to Follow on Federated Social Networks

To foster an active and engaged community, social networks employ recommendation algorithms that filter large amounts of contents and provide a user with personalized views of the network. Popular social networks such as Facebook and Twitter generate follow recommendations by listing profiles a user may be interested to connect with. Federated social networks aim to resolve issues associated with the popular social networks - such as large-scale user-surveillance and the miss-use of user data to manipulate elections - by decentralizing authority and promoting privacy. Due to their recent emergence, recommender systems do not exist for federated social networks, yet. To make these networks more attractive and promote community building, we investigate how recommendation algorithms can be applied to decentralized social networks. We present an offline and online evaluation of two recommendation strategies: a collaborative filtering recommender based on BM25 and a topology-based recommender using personalized PageRank. Our experiments on a large unbiased sample of the federated social network Mastodon shows that collaborative filtering approaches outperform a topology-based approach, whereas both approaches significantly outperform a random recommender. A subsequent live user experiment on Mastodon using balanced interleaving shows that the collaborative filtering recommender performs on par with the topology-based recommender.