Functional Commitments for All Functions, with Transparent Setup

[1]  V. Vaikuntanathan,et al.  Boosting Batch Arguments and RAM Delegation , 2023, IACR Cryptol. ePrint Arch..

[2]  Assimakis A. Kattis,et al.  RedShift: Transparent SNARKs from List Polynomial Commitments , 2022, CCS.

[3]  Helger Lipmaa,et al.  Succinct Functional Commitment for a Large Class of Arithmetic Circuits , 2020, ASIACRYPT.

[4]  Ben Fisch,et al.  Transparent SNARKs from DARK Compilers , 2020, IACR Cryptol. ePrint Arch..

[5]  Vadim Lyubashevsky,et al.  Algebraic Techniques for Short(er) Exact Lattice-Based Zero-Knowledge Proofs , 2019, IACR Cryptol. ePrint Arch..

[6]  Chris Peikert,et al.  Noninteractive Zero Knowledge for NP from (Plain) Learning With Errors , 2019, IACR Cryptol. ePrint Arch..

[7]  Dan Boneh,et al.  Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains , 2019, IACR Cryptol. ePrint Arch..

[8]  Jens Groth,et al.  Sub-Linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits , 2018, IACR Cryptol. ePrint Arch..

[9]  Dan Boneh,et al.  Bulletproofs: Short Proofs for Confidential Transactions and More , 2018, 2018 IEEE Symposium on Security and Privacy (SP).

[10]  Hoeteck Wee,et al.  FHE Circuit Privacy Almost for Free , 2016, CRYPTO.

[11]  Moti Yung,et al.  Functional Commitment Schemes: From Polynomial Commitments to Pairing-Based Accumulators from Simple Assumptions , 2016, ICALP.

[12]  Vinod Vaikuntanathan,et al.  Predicate Encryption for Circuits from LWE , 2015, CRYPTO.

[13]  Daniel Wichs,et al.  Leveled Fully Homomorphic Signatures from Standard Lattices , 2015, IACR Cryptol. ePrint Arch..

[14]  Chris Peikert,et al.  Faster Bootstrapping with Polynomial Error , 2014, CRYPTO.

[15]  Craig Gentry,et al.  Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits , 2014, EUROCRYPT.

[16]  Vinod Vaikuntanathan,et al.  Lattice-based FHE as secure as PKE , 2014, IACR Cryptol. ePrint Arch..

[17]  Brent Waters,et al.  Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based , 2013, CRYPTO.

[18]  Elaine Shi,et al.  Streaming Authenticated Data Structures , 2013, EUROCRYPT.

[19]  Elaine Shi,et al.  Signatures of Correct Computation , 2013, TCC.

[20]  Dario Fiore,et al.  Vector Commitments and Their Applications , 2013, Public Key Cryptography.

[21]  Nir Bitansky,et al.  Succinct Arguments from Multi-prover Interactive Proofs and Their Efficiency Benefits , 2012, CRYPTO.

[22]  Chris Peikert,et al.  Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller , 2012, IACR Cryptol. ePrint Arch..

[23]  Yevgeniy Vahlis,et al.  Verifiable Delegation of Computation over Large Datasets , 2011, IACR Cryptol. ePrint Arch..

[24]  Craig Gentry,et al.  Separating succinct non-interactive arguments from all falsifiable assumptions , 2011, IACR Cryptol. ePrint Arch..

[25]  Ian Goldberg,et al.  Constant-Size Commitments to Polynomials and Their Applications , 2010, ASIACRYPT.

[26]  Moti Yung,et al.  Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets with Short Proofs , 2010, TCC.

[27]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..

[28]  Rafail Ostrovsky,et al.  Efficient Arguments without Short PCPs , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[29]  Daniele Micciancio,et al.  Generalized Compact Knapsacks Are Collision Resistant , 2006, ICALP.

[30]  Chris Peikert,et al.  Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices , 2006, TCC.

[31]  Moses D. Liskov Updatable Zero-Knowledge Databases , 2005, ASIACRYPT.

[32]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[33]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Silvio Micali,et al.  Zero-knowledge sets , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[35]  Daniele Micciancio,et al.  Generalized Compact Knapsacks, Cyclic Lattices, and Efficient One-Way Functions , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[36]  Jan Camenisch,et al.  Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials , 2002, CRYPTO.

[37]  Ron Steinfeld,et al.  Content Extraction Signatures , 2001, ICISC.

[38]  R. Cramer,et al.  Linear Zero-Knowledgde. A Note on Efficient Zero-Knowledge Proofs and Arguments , 1996 .

[39]  Silvio Micali,et al.  CS proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[40]  Josh Benaloh,et al.  One-Way Accumulators: A Decentralized Alternative to Digital Sinatures (Extended Abstract) , 1994, EUROCRYPT.

[41]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[42]  Stephen A. Cook,et al.  A Depth-Universal Circuit , 1985, SIAM J. Comput..

[43]  Baruch Awerbuch,et al.  Verifiable secret sharing and achieving simultaneity in the presence of faults , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[44]  Martin R. Albrecht,et al.  Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable , 2022, IACR Cryptol. ePrint Arch..

[45]  Ngoc Khanh Nguyen,et al.  Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General , 2022, IACR Cryptol. ePrint Arch..

[46]  David J. Wu,et al.  Succinct Vector, Polynomial, and Functional Commitments from Lattices , 2022, IACR Cryptol. ePrint Arch..

[47]  D. Catalano,et al.  Additive-Homomorphic Functional Commitments and Applications to Homomorphic Signatures , 2022, IACR Cryptol. ePrint Arch..

[48]  Russell W. F. Lai,et al.  Functional Commitments for Circuits from Falsifiable Assumptions , 2022, IACR Cryptol. ePrint Arch..

[49]  A. Sahai,et al.  Non-Interactive Publicly-Verifiable Delegation of Committed Programs , 2022, IACR Cryptology ePrint Archive.

[50]  Chris Peikert,et al.  Vector and Functional Commitments from Lattices , 2021, IACR Cryptol. ePrint Arch..

[51]  Dan Boneh,et al.  Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments , 2021, CRYPTO.

[52]  Dan Boneh,et al.  Efficient Functional Commitments: How to Commit to Private Functions , 2021, IACR Cryptol. ePrint Arch..

[53]  Matteo Campanelli,et al.  Zero-Knowledge for Homomorphic Key-Value Commitments with Applications to Privacy-Preserving Ledgers , 2021, IACR Cryptol. ePrint Arch..

[54]  Zhengzhong Jin,et al.  SNARGs for P from LWE , 2021, IACR Cryptol. ePrint Arch..

[55]  Jonathan Lee,et al.  Dory: Efficient, Transparent arguments for Generalised Inner Products and Polynomial Commitments , 2020, IACR Cryptol. ePrint Arch..

[56]  Srinivasan Raghuraman,et al.  KVaC: Key-Value Commitments for Blockchains and Beyond , 2020, IACR Cryptol. ePrint Arch..

[57]  Alexander Vlasov,et al.  RedShift: Transparent SNARKs from List Polynomial Commitment IOPs , 2019, IACR Cryptol. ePrint Arch..

[58]  Alexander Vlasov,et al.  Transparent Polynomial Commitment Scheme with Polylogarithmic Communication Complexity , 2019, IACR Cryptol. ePrint Arch..

[59]  Charalampos Papamanthou,et al.  Edrax: A Cryptocurrency with Stateless Transaction Validation , 2018, IACR Cryptol. ePrint Arch..

[60]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[61]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.