Ligand-Directed Divergent Synthesis of Carbo- and Heterocyclic Ring Systems.
暂无分享,去创建一个
[1] K. Nicolaou. The emergence of the structure of the molecule and the art of its synthesis. , 2013, Angewandte Chemie.
[2] S. Kirsch,et al. Gold(I)-catalyzed divergence in the reactivity of 3-silyloxy 1,6-enynes: pinacol-terminated vs claisen-terminated cyclization cascades. , 2008, Organic letters.
[3] Stuart L Schreiber,et al. A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.
[4] F. Toste,et al. Catalytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. , 2004, Journal of the American Chemical Society.
[5] F. Rominger,et al. Chemoselectivity control: gold(I)-catalyzed synthesis of 6,7-dihydrobenzofuran-4(5H)-ones and benzofurans from 1-(alkynyl)-7-oxabicyclo[4.1.0]heptan-2-ones. , 2013, Chemistry.
[6] A. Trabocchi,et al. Diversity-Oriented Synthesis as a Tool for Chemical Genetics , 2014, Molecules.
[7] A. Osuka,et al. Regiocontrolled palladium-catalyzed arylative cyclizations of alkynols. , 2014, Journal of the American Chemical Society.
[8] Heejun Kim,et al. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces. , 2014, Journal of the American Chemical Society.
[9] J. Schomaker,et al. Ligand-Controlled, Tunable Silver-Catalyzed C–H Amination , 2014, Journal of the American Chemical Society.
[10] M. Feng,et al. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization. , 2016, Journal of the American Chemical Society.
[11] Xiangying Tang,et al. Gold(I)-catalyzed selective heterocyclization of propargylic thioureas: mechanistic study of competitive gold-activation mode. , 2015, Chemistry.
[12] Shun-Yi Wang,et al. Pd-Catalyzed Intramolecular Heck Reaction, C(sp(2))-H Activation, 1,4-Pd Migration, and Aminopalladation: Chemoselective Synthesis of Dihydroindeno[1,2,3-kl]acridines and 3-Arylindoles. , 2016, Organic letters.
[13] Samuel Suárez‐Pantiga,et al. Competitive gold-activation modes in terminal alkynes: an experimental and mechanistic study. , 2014, Chemistry.
[14] F. Toste,et al. Ligand-controlled access to [4 + 2] and [4 + 3] cycloadditions in gold-catalyzed reactions of allene-dienes. , 2009, Journal of the American Chemical Society.
[15] Junliang Zhang,et al. The Divergent Synthesis of Nitrogen Heterocycles by Rhodium(I)-Catalyzed Intermolecular Cycloadditions of Vinyl Aziridines and Alkynes. , 2016, Journal of the American Chemical Society.
[16] H. Waldmann,et al. A ligand-directed divergent catalytic approach to establish structural and functional scaffold diversity , 2017, Nature Communications.
[17] David R Spring,et al. Diversity-oriented synthesis: producing chemical tools for dissecting biology. , 2012, Chemical Society reviews.
[18] Martin D. Burke,et al. Eine Strategie für die Diversitäts‐orientierte Synthese , 2004 .
[19] M. Feng,et al. Ligand Controlled Regiodivergent C1 Insertion on Arynes for Construction of Phenanthridinone and Acridone Alkaloids. , 2015, Angewandte Chemie.
[20] A. Fürstner,et al. Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes. , 2004, Journal of the American Chemical Society.
[21] H. Waldmann,et al. Small-Molecule Target Engagement in Cells. , 2016, Cell chemical biology.
[22] J. Brandt,et al. über die katalytische Umwandlung von Olefinen, II Zum Reaktionsablauf der Cyclotrimerisation von Butadien-(1.3) , 1969 .
[23] H. Waldmann,et al. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung , 2017 .
[24] M. Sanford,et al. Room temperature palladium-catalyzed 2-arylation of indoles. , 2006, Journal of the American Chemical Society.
[25] Erick M. Carreira,et al. Untersuchung der Biologie von Naturstoffen: systematische Strukturvariation durch umgelenkte Totalsynthese , 2010 .
[26] Baran,et al. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century. , 2000, Angewandte Chemie.
[27] William L. Jorgensen. Herausforderungen für die akademische Wirkstoff‐Forschung , 2012 .
[28] R. Hicklin,et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. , 2013, Nature chemistry.
[29] A. Echavarren,et al. Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. , 2008, Chemical reviews.
[30] K. Nicolaou. Vom Aufkommen des Molekülkonzepts zur Kunst der Molekülsynthese , 2013 .
[31] W. Thiel,et al. Steering the surprisingly modular pi-acceptor properties of N-heterocyclic carbenes: implications for gold catalysis. , 2010, Angewandte Chemie.
[32] Jessada Mahatthananchai,et al. Katalytische selektive Synthese , 2012 .
[33] A. Echavarren,et al. Gold(I)-catalyzed intermolecular addition of carbon nucleophiles to 1,5- and 1,6-enynes. , 2008, The Journal of organic chemistry.
[34] T. Jamison,et al. Recent advances in homogeneous nickel catalysis , 2014, Nature.
[35] S. Danishefsky,et al. Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. , 2006, The Journal of organic chemistry.
[36] S. Wetzel,et al. Biologie‐orientierte Synthese (BIOS) , 2011 .
[37] Véronique Michelet,et al. Cycloisomerisierungen von 1,n‐Eninen: faszinierende metallkatalysierte Umlagerungen und mechanistische Einblicke , 2008 .
[38] William L Jorgensen,et al. Challenges for academic drug discovery. , 2012, Angewandte Chemie.
[39] Robert J. Phipps,et al. Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions. , 2008, Journal of the American Chemical Society.
[40] Weidong Rao,et al. Ligand-controlled product selectivity in gold-catalyzed double cycloisomerization of 1,11-dien-3,9-diyne benzoates. , 2015, Journal of the American Chemical Society.
[41] Paul J Hergenrother,et al. Natural products as starting points for the synthesis of complex and diverse compounds. , 2014, Natural product reports.
[42] A. Fürstner. From Total Synthesis to Diverted Total Synthesis: Case Studies in the Amphidinolide Series , 2011 .
[43] P. Heimbach,et al. Stereochemistry of the Catalyzed Cyclodimerization of Piperylene , 1970 .
[44] C. Nevado,et al. Cationic gold(I) complexes: highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. , 2004, Angewandte Chemie.
[45] D. Newman,et al. Natural Products as Sources of New Drugs from 1981 to 2014. , 2016, Journal of natural products.
[46] E. Anderson,et al. Ligand bite angle-dependent palladium-catalyzed cyclization of propargylic carbonates to 2-alkynyl azacycles or cyclic dienamides. , 2014, Angewandte Chemie.
[47] Guangbin Dong,et al. Divergent syntheses of fused β-naphthol and indene scaffolds by rhodium-catalyzed direct and decarbonylative alkyne-benzocyclobutenone couplings. , 2014, Angewandte Chemie.
[48] N. Yoshikai,et al. Cobalt-catalyzed intramolecular olefin hydroarylation leading to dihydropyrroloindoles and tetrahydropyridoindoles. , 2013, Angewandte Chemie.
[49] Christine G. Espino,et al. Synthesis of 1,3-Difunctionalized Amine Derivatives through Selective C−H Bond Oxidation , 2001 .
[50] J. Bode,et al. Catalytic selective synthesis. , 2012, Angewandte Chemie.
[51] J. Montgomery,et al. Access to macrocyclic endocyclic and exocyclic allylic alcohols by nickel-catalyzed reductive cyclization of ynals. , 2005, Journal of the American Chemical Society.
[52] C. Hayes,et al. Rh(II)-catalysed room temperature aziridination of homoallyl-carbamates. , 2006, Chemical communications.
[53] S. Chandrasekhar,et al. "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery. , 2015, Organic & biomolecular chemistry.
[54] P. Chan,et al. Gold‐Catalyzed Cycloisomerizations of 1,n‐Diyne Carbonates and Esters , 2016 .
[55] J. Montgomery,et al. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings. , 2015, Accounts of chemical research.
[56] Huanfeng Jiang,et al. Regioselective and Stereoselective Pd-Catalyzed Intramolecular Arylation of Furans: Access to Spirooxindoles and 5H-Furo[2,3-c]quinolin-4-ones. , 2016, The Journal of organic chemistry.
[57] Frank Glorius,et al. Contemporary screening approaches to reaction discovery and development. , 2014, Nature chemistry.
[58] Stefan Zimmermann,et al. Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden‐ und Wirkstoffsuche , 2016 .
[59] Chien‐Hong Cheng,et al. Ligand-Controlled Divergent C-H Functionalization of Aldehydes with Enynes by Cobalt Catalysts. , 2015, Journal of the American Chemical Society.
[60] F. Glorius,et al. Ligandengesteuerte hoch regioselektive und asymmetrische Hydrierung von Chinoxalinen, katalysiert durch Ruthenium‐Komplexe von N‐heterocyclischen Carbenen , 2011 .
[61] Frank Glorius,et al. Intermolecular reaction screening as a tool for reaction evaluation. , 2015, Accounts of chemical research.
[62] Xiangying Tang,et al. Catalyst-Dependent Stereodivergent and Regioselective Synthesis of Indole-Fused Heterocycles through Formal Cycloadditions of Indolyl-Allenes. , 2015, Journal of the American Chemical Society.
[63] E. Carreira,et al. Probing the biology of natural products: molecular editing by diverted total synthesis. , 2010, Angewandte Chemie.
[64] K. Nicolaou,et al. Der Stand der Totalsynthese zu Beginn des 21. Jahrhunderts , 2000 .
[65] E. V. Van der Eycken,et al. Ligand-controlled product selectivity in palladium-catalyzed domino post-Ugi construction of (spiro)polyheterocycles. , 2016, Chemical communications.
[66] Xiangying Tang,et al. Divergent Reaction Pathways in Gold‐Catalyzed Cycloisomerization of 1,5‐Enynes Containing a Cyclopropane Ring: Dramatic ortho Substituent and Temperature Effects. , 2016 .
[67] H. Waldmann,et al. A general catalytic reaction sequence to access alkaloid-inspired indole polycycles. , 2015, Chemical communications.
[68] K. Houk,et al. Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. , 2008, Journal of the American Chemical Society.
[69] H. Waldmann,et al. Chemical biology tools for regulating RAS signaling complexity in space and time. , 2014, Chemistry & biology.
[70] P. Toullec,et al. Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights. , 2008, Angewandte Chemie.
[71] A. Echavarren,et al. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity , 2015, Chemical reviews.
[72] F. Glorius,et al. Ligand-controlled highly regioselective and asymmetric hydrogenation of quinoxalines catalyzed by ruthenium N-heterocyclic carbene complexes. , 2011, Angewandte Chemie.
[73] N. Cramer,et al. Ligand-controlled regiodivergent nickel-catalyzed annulation of pyridones. , 2014, Angewandte Chemie.
[74] J. Fox,et al. Rh-Catalyzed Intermolecular Reactions of Alkynes with α-Diazoesters That Possess β-Hydrogens: Ligand-Based Control over Divergent Pathways , 2007 .
[75] A. Corma,et al. Similarities and differences between the "relativistic" triad gold, platinum, and mercury in catalysis. , 2012, Angewandte Chemie.
[76] Stefan Wetzel,et al. Biology-oriented synthesis. , 2011, Angewandte Chemie.
[77] Herbert Waldmann,et al. New Modalities for Challenging Targets in Drug Discovery. , 2017, Angewandte Chemie.
[78] M. Shi,et al. Divergent Synthesis of Carbo- and Heterocycles via Gold-Catalyzed Reactions , 2016 .
[79] P. Heimbach,et al. über die katalytische Umwandlung von Olefinen, III. Synthese von cis.cis‐Cyclooctadien‐(1.5) und cis‐1.2‐Divinyl‐cyclobutan , 1969 .
[80] A. Hashmi. Dual gold catalysis. , 2014, Accounts of chemical research.
[81] Avelino Corma,et al. Ähnlichkeiten und Unterschiede innerhalb der “relativistischen” Triade Gold, Platin und Quecksilber in der Katalyse , 2012 .
[82] Kamal Kumar,et al. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. , 2016, Angewandte Chemie.
[83] Matthew S Sigman,et al. Uncovering Subtle Ligand Effects of Phosphines Using Gold(I) Catalysis. , 2017, ACS catalysis.
[84] H. Waldmann,et al. Silver catalyzed cascade synthesis of alkaloid ring systems: concise total synthesis of fascaplysin, homofascaplysin C and analogues. , 2010, Chemical communications.
[85] S. Buchwald,et al. Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl)aniline: preparation of carbazoles, indoles, dibenzazepines, and acridines. , 2010, Journal of the American Chemical Society.
[86] S. Rizzo,et al. Development of a natural-product-derived chemical toolbox for modulation of protein function. , 2014, Chemical reviews.
[87] P. Heimbach,et al. über die katalytische Umwandlung von Olefinen, V Synthese von 4.5‐Dimethyl‐(cis.cis.trans)‐cyclodecatrien‐(1.4.7) Mischoligomerisation von Butadien und Butin ‐(2) , 1969 .
[88] Xinwen Zhang,et al. Mechanism and Origins of Ligand‐Controlled Selectivity of Rhodium‐Catalyzed Intermolecular Cycloadditions of Vinylaziridines with Alkynes , 2016 .
[89] Zheng Wang,et al. Tunable carbonyl ylide reactions: selective synthesis of dihydrofurans and dihydrobenzoxepines. , 2011, Angewandte Chemie.
[90] Herbert Waldmann,et al. Biology-oriented synthesis: harnessing the power of evolution. , 2014, Journal of the American Chemical Society.