Ligand-Directed Divergent Synthesis of Carbo- and Heterocyclic Ring Systems.

Chemical tools that enable a catalytic reaction to selectively and efficiently yield different products will allow charting of wider chemical space. In ligand-directed divergent synthesis, a common mode of catalysis is modulated by employing different ligands for catalytic organometallic complexes to transform either common substrates or common reactive intermediates into distinct molecular scaffolds. The strategy has the potential to create important and diverse scaffolds and to unveil novel modes of catalytic transformations for wider synthetic applications. This strategy is described and recent efforts in this emerging field of catalysis, focusing on transition-metal catalysis for the synthesis of carbo- and heterocyclic ring systems, are reviewed.

[1]  K. Nicolaou The emergence of the structure of the molecule and the art of its synthesis. , 2013, Angewandte Chemie.

[2]  S. Kirsch,et al.  Gold(I)-catalyzed divergence in the reactivity of 3-silyloxy 1,6-enynes: pinacol-terminated vs claisen-terminated cyclization cascades. , 2008, Organic letters.

[3]  Stuart L Schreiber,et al.  A planning strategy for diversity-oriented synthesis. , 2004, Angewandte Chemie.

[4]  F. Toste,et al.  Catalytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. , 2004, Journal of the American Chemical Society.

[5]  F. Rominger,et al.  Chemoselectivity control: gold(I)-catalyzed synthesis of 6,7-dihydrobenzofuran-4(5H)-ones and benzofurans from 1-(alkynyl)-7-oxabicyclo[4.1.0]heptan-2-ones. , 2013, Chemistry.

[6]  A. Trabocchi,et al.  Diversity-Oriented Synthesis as a Tool for Chemical Genetics , 2014, Molecules.

[7]  A. Osuka,et al.  Regiocontrolled palladium-catalyzed arylative cyclizations of alkynols. , 2014, Journal of the American Chemical Society.

[8]  Heejun Kim,et al.  Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces. , 2014, Journal of the American Chemical Society.

[9]  J. Schomaker,et al.  Ligand-Controlled, Tunable Silver-Catalyzed C–H Amination , 2014, Journal of the American Chemical Society.

[10]  M. Feng,et al.  Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization. , 2016, Journal of the American Chemical Society.

[11]  Xiangying Tang,et al.  Gold(I)-catalyzed selective heterocyclization of propargylic thioureas: mechanistic study of competitive gold-activation mode. , 2015, Chemistry.

[12]  Shun-Yi Wang,et al.  Pd-Catalyzed Intramolecular Heck Reaction, C(sp(2))-H Activation, 1,4-Pd Migration, and Aminopalladation: Chemoselective Synthesis of Dihydroindeno[1,2,3-kl]acridines and 3-Arylindoles. , 2016, Organic letters.

[13]  Samuel Suárez‐Pantiga,et al.  Competitive gold-activation modes in terminal alkynes: an experimental and mechanistic study. , 2014, Chemistry.

[14]  F. Toste,et al.  Ligand-controlled access to [4 + 2] and [4 + 3] cycloadditions in gold-catalyzed reactions of allene-dienes. , 2009, Journal of the American Chemical Society.

[15]  Junliang Zhang,et al.  The Divergent Synthesis of Nitrogen Heterocycles by Rhodium(I)-Catalyzed Intermolecular Cycloadditions of Vinyl Aziridines and Alkynes. , 2016, Journal of the American Chemical Society.

[16]  H. Waldmann,et al.  A ligand-directed divergent catalytic approach to establish structural and functional scaffold diversity , 2017, Nature Communications.

[17]  David R Spring,et al.  Diversity-oriented synthesis: producing chemical tools for dissecting biology. , 2012, Chemical Society reviews.

[18]  Martin D. Burke,et al.  Eine Strategie für die Diversitäts‐orientierte Synthese , 2004 .

[19]  M. Feng,et al.  Ligand Controlled Regiodivergent C1 Insertion on Arynes for Construction of Phenanthridinone and Acridone Alkaloids. , 2015, Angewandte Chemie.

[20]  A. Fürstner,et al.  Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes. , 2004, Journal of the American Chemical Society.

[21]  H. Waldmann,et al.  Small-Molecule Target Engagement in Cells. , 2016, Cell chemical biology.

[22]  J. Brandt,et al.  über die katalytische Umwandlung von Olefinen, II Zum Reaktionsablauf der Cyclotrimerisation von Butadien-(1.3) , 1969 .

[23]  H. Waldmann,et al.  Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung , 2017 .

[24]  M. Sanford,et al.  Room temperature palladium-catalyzed 2-arylation of indoles. , 2006, Journal of the American Chemical Society.

[25]  Erick M. Carreira,et al.  Untersuchung der Biologie von Naturstoffen: systematische Strukturvariation durch umgelenkte Totalsynthese , 2010 .

[26]  Baran,et al.  The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century. , 2000, Angewandte Chemie.

[27]  William L. Jorgensen Herausforderungen für die akademische Wirkstoff‐Forschung , 2012 .

[28]  R. Hicklin,et al.  A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. , 2013, Nature chemistry.

[29]  A. Echavarren,et al.  Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. , 2008, Chemical reviews.

[30]  K. Nicolaou Vom Aufkommen des Molekülkonzepts zur Kunst der Molekülsynthese , 2013 .

[31]  W. Thiel,et al.  Steering the surprisingly modular pi-acceptor properties of N-heterocyclic carbenes: implications for gold catalysis. , 2010, Angewandte Chemie.

[32]  Jessada Mahatthananchai,et al.  Katalytische selektive Synthese , 2012 .

[33]  A. Echavarren,et al.  Gold(I)-catalyzed intermolecular addition of carbon nucleophiles to 1,5- and 1,6-enynes. , 2008, The Journal of organic chemistry.

[34]  T. Jamison,et al.  Recent advances in homogeneous nickel catalysis , 2014, Nature.

[35]  S. Danishefsky,et al.  Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. , 2006, The Journal of organic chemistry.

[36]  S. Wetzel,et al.  Biologie‐orientierte Synthese (BIOS) , 2011 .

[37]  Véronique Michelet,et al.  Cycloisomerisierungen von 1,n‐Eninen: faszinierende metallkatalysierte Umlagerungen und mechanistische Einblicke , 2008 .

[38]  William L Jorgensen,et al.  Challenges for academic drug discovery. , 2012, Angewandte Chemie.

[39]  Robert J. Phipps,et al.  Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions. , 2008, Journal of the American Chemical Society.

[40]  Weidong Rao,et al.  Ligand-controlled product selectivity in gold-catalyzed double cycloisomerization of 1,11-dien-3,9-diyne benzoates. , 2015, Journal of the American Chemical Society.

[41]  Paul J Hergenrother,et al.  Natural products as starting points for the synthesis of complex and diverse compounds. , 2014, Natural product reports.

[42]  A. Fürstner From Total Synthesis to Diverted Total Synthesis: Case Studies in the Amphidinolide Series , 2011 .

[43]  P. Heimbach,et al.  Stereochemistry of the Catalyzed Cyclodimerization of Piperylene , 1970 .

[44]  C. Nevado,et al.  Cationic gold(I) complexes: highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. , 2004, Angewandte Chemie.

[45]  D. Newman,et al.  Natural Products as Sources of New Drugs from 1981 to 2014. , 2016, Journal of natural products.

[46]  E. Anderson,et al.  Ligand bite angle-dependent palladium-catalyzed cyclization of propargylic carbonates to 2-alkynyl azacycles or cyclic dienamides. , 2014, Angewandte Chemie.

[47]  Guangbin Dong,et al.  Divergent syntheses of fused β-naphthol and indene scaffolds by rhodium-catalyzed direct and decarbonylative alkyne-benzocyclobutenone couplings. , 2014, Angewandte Chemie.

[48]  N. Yoshikai,et al.  Cobalt-catalyzed intramolecular olefin hydroarylation leading to dihydropyrroloindoles and tetrahydropyridoindoles. , 2013, Angewandte Chemie.

[49]  Christine G. Espino,et al.  Synthesis of 1,3-Difunctionalized Amine Derivatives through Selective C−H Bond Oxidation , 2001 .

[50]  J. Bode,et al.  Catalytic selective synthesis. , 2012, Angewandte Chemie.

[51]  J. Montgomery,et al.  Access to macrocyclic endocyclic and exocyclic allylic alcohols by nickel-catalyzed reductive cyclization of ynals. , 2005, Journal of the American Chemical Society.

[52]  C. Hayes,et al.  Rh(II)-catalysed room temperature aziridination of homoallyl-carbamates. , 2006, Chemical communications.

[53]  S. Chandrasekhar,et al.  "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery. , 2015, Organic & biomolecular chemistry.

[54]  P. Chan,et al.  Gold‐Catalyzed Cycloisomerizations of 1,n‐Diyne Carbonates and Esters , 2016 .

[55]  J. Montgomery,et al.  Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings. , 2015, Accounts of chemical research.

[56]  Huanfeng Jiang,et al.  Regioselective and Stereoselective Pd-Catalyzed Intramolecular Arylation of Furans: Access to Spirooxindoles and 5H-Furo[2,3-c]quinolin-4-ones. , 2016, The Journal of organic chemistry.

[57]  Frank Glorius,et al.  Contemporary screening approaches to reaction discovery and development. , 2014, Nature chemistry.

[58]  Stefan Zimmermann,et al.  Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden‐ und Wirkstoffsuche , 2016 .

[59]  Chien‐Hong Cheng,et al.  Ligand-Controlled Divergent C-H Functionalization of Aldehydes with Enynes by Cobalt Catalysts. , 2015, Journal of the American Chemical Society.

[60]  F. Glorius,et al.  Ligandengesteuerte hoch regioselektive und asymmetrische Hydrierung von Chinoxalinen, katalysiert durch Ruthenium‐Komplexe von N‐heterocyclischen Carbenen , 2011 .

[61]  Frank Glorius,et al.  Intermolecular reaction screening as a tool for reaction evaluation. , 2015, Accounts of chemical research.

[62]  Xiangying Tang,et al.  Catalyst-Dependent Stereodivergent and Regioselective Synthesis of Indole-Fused Heterocycles through Formal Cycloadditions of Indolyl-Allenes. , 2015, Journal of the American Chemical Society.

[63]  E. Carreira,et al.  Probing the biology of natural products: molecular editing by diverted total synthesis. , 2010, Angewandte Chemie.

[64]  K. Nicolaou,et al.  Der Stand der Totalsynthese zu Beginn des 21. Jahrhunderts , 2000 .

[65]  E. V. Van der Eycken,et al.  Ligand-controlled product selectivity in palladium-catalyzed domino post-Ugi construction of (spiro)polyheterocycles. , 2016, Chemical communications.

[66]  Xiangying Tang,et al.  Divergent Reaction Pathways in Gold‐Catalyzed Cycloisomerization of 1,5‐Enynes Containing a Cyclopropane Ring: Dramatic ortho Substituent and Temperature Effects. , 2016 .

[67]  H. Waldmann,et al.  A general catalytic reaction sequence to access alkaloid-inspired indole polycycles. , 2015, Chemical communications.

[68]  K. Houk,et al.  Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. , 2008, Journal of the American Chemical Society.

[69]  H. Waldmann,et al.  Chemical biology tools for regulating RAS signaling complexity in space and time. , 2014, Chemistry & biology.

[70]  P. Toullec,et al.  Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights. , 2008, Angewandte Chemie.

[71]  A. Echavarren,et al.  Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity , 2015, Chemical reviews.

[72]  F. Glorius,et al.  Ligand-controlled highly regioselective and asymmetric hydrogenation of quinoxalines catalyzed by ruthenium N-heterocyclic carbene complexes. , 2011, Angewandte Chemie.

[73]  N. Cramer,et al.  Ligand-controlled regiodivergent nickel-catalyzed annulation of pyridones. , 2014, Angewandte Chemie.

[74]  J. Fox,et al.  Rh-Catalyzed Intermolecular Reactions of Alkynes with α-Diazoesters That Possess β-Hydrogens: Ligand-Based Control over Divergent Pathways , 2007 .

[75]  A. Corma,et al.  Similarities and differences between the "relativistic" triad gold, platinum, and mercury in catalysis. , 2012, Angewandte Chemie.

[76]  Stefan Wetzel,et al.  Biology-oriented synthesis. , 2011, Angewandte Chemie.

[77]  Herbert Waldmann,et al.  New Modalities for Challenging Targets in Drug Discovery. , 2017, Angewandte Chemie.

[78]  M. Shi,et al.  Divergent Synthesis of Carbo- and Heterocycles via Gold-Catalyzed Reactions , 2016 .

[79]  P. Heimbach,et al.  über die katalytische Umwandlung von Olefinen, III. Synthese von cis.cis‐Cyclooctadien‐(1.5) und cis‐1.2‐Divinyl‐cyclobutan , 1969 .

[80]  A. Hashmi Dual gold catalysis. , 2014, Accounts of chemical research.

[81]  Avelino Corma,et al.  Ähnlichkeiten und Unterschiede innerhalb der “relativistischen” Triade Gold, Platin und Quecksilber in der Katalyse , 2012 .

[82]  Kamal Kumar,et al.  Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. , 2016, Angewandte Chemie.

[83]  Matthew S Sigman,et al.  Uncovering Subtle Ligand Effects of Phosphines Using Gold(I) Catalysis. , 2017, ACS catalysis.

[84]  H. Waldmann,et al.  Silver catalyzed cascade synthesis of alkaloid ring systems: concise total synthesis of fascaplysin, homofascaplysin C and analogues. , 2010, Chemical communications.

[85]  S. Buchwald,et al.  Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl)aniline: preparation of carbazoles, indoles, dibenzazepines, and acridines. , 2010, Journal of the American Chemical Society.

[86]  S. Rizzo,et al.  Development of a natural-product-derived chemical toolbox for modulation of protein function. , 2014, Chemical reviews.

[87]  P. Heimbach,et al.  über die katalytische Umwandlung von Olefinen, V Synthese von 4.5‐Dimethyl‐(cis.cis.trans)‐cyclodecatrien‐(1.4.7) Mischoligomerisation von Butadien und Butin ‐(2) , 1969 .

[88]  Xinwen Zhang,et al.  Mechanism and Origins of Ligand‐Controlled Selectivity of Rhodium‐Catalyzed Intermolecular Cycloadditions of Vinylaziridines with Alkynes , 2016 .

[89]  Zheng Wang,et al.  Tunable carbonyl ylide reactions: selective synthesis of dihydrofurans and dihydrobenzoxepines. , 2011, Angewandte Chemie.

[90]  Herbert Waldmann,et al.  Biology-oriented synthesis: harnessing the power of evolution. , 2014, Journal of the American Chemical Society.