A p-Adic Approach to the Computation of Gröbner Bases

A method for the p-adic lifting of a Grobner basis is presented. If F is a finite vector of polynomials in @?[x"1,...,x"1] and p is a lucky prime for F (it turns out that there are only finitely many unlucky primes) then in a first step the normalized reduced Grobner basis G^(^0^) for F modulo p is computed, together with matrices Y^(^0^) and R^(^0^) such that Y^(^0^), G^(^0^)=F (mod p) and R^(^0^). G^(^0^)=0(mod p), where the rows of R^(^0^) are the syzygies of G^(^0^) derived from the reduction of the S-polynomials of G^(^0^) to 0. These congruences can be lifted to congruences modulo p^i, for any natural number i, finally leading to the normalized reduced Grobner basis for F in @?[x"1,...,x"1].

[1]  David Y. Y. Yun,et al.  Computational aspects of Hensel-type univariate polynomial greatest common divisor algorithms , 1974, SIGS.

[2]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[3]  Gary L. Ebert,et al.  Some comments on the modular approach to Gröbner-bases , 1983, SIGS.

[4]  Wolfgang Trinks,et al.  On improving approximate results of Buchberger's algorithm by Newton's method , 1984, SIGS.

[5]  W. S. Brown,et al.  On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors , 1971, JACM.

[6]  Bruno Buchberger,et al.  Algorithm 628: An algorithm for constructing canonical bases of polynomial ideals , 1985, TOMS.

[7]  N. Bose Applied multidimensional systems theory , 1982 .

[8]  H. M. Möller,et al.  New Constructive Methods in Classical Ideal Theory , 1986 .

[9]  Bruno Buchberger,et al.  A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.

[10]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[11]  Franz Winkler The Church-Rosser property in computer algebra and special theorem proving: an investigation of critical-pair/completion algorithms (Ph.D. thesis) , 1984, SIGS.

[12]  H. Zassenhaus On Hensel factorization, I , 1969 .

[14]  E. W. Ng Symbolic and Algebraic Computation , 1979, Lecture Notes in Computer Science.

[15]  Peter Kornerup,et al.  Mapping integers and hensel codes onto Farey fractions , 1983, BIT Comput. Sci. Sect..

[16]  Paul S. Wang An improved multivariate polynomial factoring algorithm , 1978 .

[17]  David Y. Y. Yun,et al.  The EZ GCD algorithm , 1973, ACM Annual Conference.

[18]  Paul S. Wang,et al.  Factoring multivariate polynomials over the integers , 1973, SIGS.

[19]  André Galligo,et al.  Théorème de division et stabilité en géométrie analytique locale , 1979 .

[20]  M. Lauer Computing by Homomorphic Images , 1983 .

[21]  Andreas Zeh-Marschke,et al.  Realisierung der Mathieugruppen M11 und M12 als Galoisgruppen über Q , 1986 .

[22]  Bruno Buchberger,et al.  Some properties of Gröbner-bases for polynomial ideals , 1976, SIGS.