Scattering theory of walking droplets in the presence of obstacles

We aim to describe a droplet bouncing on a vibrating bath using a simple and highly versatile model inspired from quantum mechanics. Close to the Faraday instability, a long-lived surface wave is created at each bounce, which serves as a pilot wave for the droplet. This leads to so called walking droplets or walkers. Since the seminal experiment by {\it Couder et al} [Phys. Rev. Lett. {\bf 97}, 154101 (2006)] there have been many attempts to accurately reproduce the experimental results. We propose to describe the trajectories of a walker using a Green function approach. The Green function is related to the Helmholtz equation with Neumann boundary conditions on the obstacle(s) and outgoing boundary conditions at infinity. For a single-slit geometry our model is exactly solvable and reproduces some general features observed experimentally. It stands for a promising candidate to account for the presence of arbitrary boundaries in the walker's dynamics.

[1]  Yves Couder,et al.  Information stored in Faraday waves: the origin of a path memory , 2011, Journal of Fluid Mechanics.

[2]  E. Fort,et al.  From bouncing to floating: noncoalescence of drops on a fluid bath. , 2005, Physical review letters.

[3]  Paul A. Milewski,et al.  Faraday pilot-wave dynamics: modelling and computation , 2015, Journal of Fluid Mechanics.

[4]  Louis de Broglie,et al.  Ondes et mouvements , 1926 .

[5]  J. Moukhtar,et al.  Path-memory induced quantization of classical orbits , 2010, Proceedings of the National Academy of Sciences.

[6]  Arezki Boudaoud,et al.  Particle–wave association on a fluid interface , 2006, Journal of Fluid Mechanics.

[7]  Bruno Sieger Die Beugung einer ebenen elektrischen Welle an einem Schirm von elliptischem Querschnitt , 2022 .

[8]  J. M. Bush,et al.  Drops bouncing on a vibrating bath , 2013, Journal of Fluid Mechanics.

[9]  M. Strutt Beugung einer ebenen Welle an einem Spalt von endlicher Breite , 1931 .

[10]  Yves Couder,et al.  Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.

[11]  N. Vandewalle,et al.  Strings of droplets propelled by coherent waves. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  E. Fort,et al.  Unpredictable tunneling of a classical wave-particle association. , 2009, Physical review letters.

[13]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[14]  D. Harris,et al.  Exotic states of bouncing and walking droplets , 2013 .

[15]  John W. M. Bush,et al.  Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization , 2013, Journal of Fluid Mechanics.

[16]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[17]  K. Schwarzschild,et al.  Die Beugung und Polarisation des Lichts durch einen Spalt. I , 1901 .

[18]  Tristan Gilet,et al.  Dynamics and statistics of wave-particle interactions in a confined geometry. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  D. Harris,et al.  Wavelike statistics from pilot-wave dynamics in a circular corral. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[21]  Thomas Brooke Benjamin,et al.  The stability of the plane free surface of a liquid in vertical periodic motion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  J. M. Bush Pilot-Wave Hydrodynamics , 2015 .

[23]  David Shirokoff Bouncing droplets on a billiard table. , 2013, Chaos.

[24]  John W. M. Bush,et al.  The new wave of pilot-wave theory , 2015 .

[25]  Matthieu Labousse Etude d'une dynamique à mémoire de chemin : une expérimentation théorique , 2014 .

[26]  John W. M. Bush,et al.  Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory , 2013, Journal of Fluid Mechanics.

[27]  T. Bohr,et al.  Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Marc Miskin,et al.  Self-organization into quantized eigenstates of a classical wave-driven particle , 2014, Nature Communications.

[29]  The pilot-wave dynamics of walking droplets , 2013 .

[30]  Tristan Gilet,et al.  Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. , 2016, Physical review. E.

[31]  John W. M. Bush,et al.  A trajectory equation for walking droplets: hydrodynamic pilot-wave theory , 2013, Journal of Fluid Mechanics.

[32]  E. Fort,et al.  Dynamical phenomena: Walking and orbiting droplets , 2005, Nature.

[33]  E. Jones,et al.  Momentum exchange in the electron double-slit experiment , 2016, 2012.02141.