Scattering theory of walking droplets in the presence of obstacles

We aim to describe a droplet bouncing on a vibrating bath using a simple and highly versatile model inspired from quantum mechanics. Close to the Faraday instability, a long-lived surface wave is created at each bounce, which serves as a pilot wave for the droplet. This leads to so called walking droplets or walkers. Since the seminal experiment by Couder et al (2006 Phys. Rev. Lett. 97 154101) there have been many attempts to accurately reproduce the experimental results.We propose to describe the trajectories of a walker using a Green function approach. The Green function is related to the Helmholtz equation with Neumann boundary conditions on the obstacle(s) and outgoing boundary conditions at infinity. For a single-slit geometry our model is exactly solvable and reproduces some general features observed experimentally. It stands for a promising candidate to account for the presence of arbitrary boundaries in the walker’s dynamics.

[1]  Tristan Gilet,et al.  Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. , 2016, Physical review. E.

[2]  E. Jones,et al.  Momentum exchange in the electron double-slit experiment , 2016, 2012.02141.

[3]  John W. M. Bush,et al.  The new wave of pilot-wave theory , 2015 .

[4]  Paul A. Milewski,et al.  Faraday pilot-wave dynamics: modelling and computation , 2015, Journal of Fluid Mechanics.

[5]  T. Bohr,et al.  Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Madan Singh,et al.  Neutrino mass matrices with one texture zero and a vanishing neutrino mass , 2015, 1506.04868.

[7]  N. Vandewalle,et al.  Strings of droplets propelled by coherent waves. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. M. Bush Pilot-Wave Hydrodynamics , 2015 .

[9]  Matthieu Labousse,et al.  Etude d'une dynamique à mémoire de chemin : une expérimentation théorique , 2014 .

[10]  Tristan Gilet,et al.  Dynamics and statistics of wave-particle interactions in a confined geometry. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Marc Miskin,et al.  Self-organization into quantized eigenstates of a classical wave-driven particle , 2014, Nature Communications.

[12]  John W. M. Bush,et al.  Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization , 2013, Journal of Fluid Mechanics.

[13]  D. Harris,et al.  The pilot-wave dynamics of walking droplets , 2013 .

[14]  D. Harris,et al.  Exotic states of bouncing and walking droplets , 2013 .

[15]  D. Harris,et al.  Wavelike statistics from pilot-wave dynamics in a circular corral. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  John W. M. Bush,et al.  Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory , 2013, Journal of Fluid Mechanics.

[17]  J. M. Bush,et al.  Drops bouncing on a vibrating bath , 2013, Journal of Fluid Mechanics.

[18]  Anand U. Oza,et al.  A trajectory equation for walking droplets: hydrodynamic pilot-wave theory , 2012, Journal of Fluid Mechanics.

[19]  David Shirokoff,et al.  Bouncing droplets on a billiard table. , 2012, Chaos.

[20]  Yves Couder,et al.  Information stored in Faraday waves: the origin of a path memory , 2011, Journal of Fluid Mechanics.

[21]  J. Moukhtar,et al.  Path-memory induced quantization of classical orbits , 2010, Proceedings of the National Academy of Sciences.

[22]  E. Fort,et al.  Unpredictable tunneling of a classical wave-particle association. , 2009, Physical review letters.

[23]  Yves Couder,et al.  Single-particle diffraction and interference at a macroscopic scale. , 2006, Physical review letters.

[24]  Arezki Boudaoud,et al.  Particle–wave association on a fluid interface , 2006, Journal of Fluid Mechanics.

[25]  E. Fort,et al.  Dynamical phenomena: Walking and orbiting droplets , 2005, Nature.

[26]  Y. Couder,et al.  From bouncing to floating: noncoalescence of drops on a fluid bath. , 2005, Physical review letters.

[27]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[28]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[29]  Thomas Brooke Benjamin,et al.  The stability of the plane free surface of a liquid in vertical periodic motion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[31]  M. Strutt Beugung einer ebenen Welle an einem Spalt von endlicher Breite , 1931 .

[32]  K. Schwarzschild,et al.  Die Beugung und Polarisation des Lichts durch einen Spalt. I , 1901 .

[33]  D. Harris The pilot-wave dynamics of walking droplets in confinement , 2015 .

[34]  Louis de Broglie,et al.  Ondes et mouvements , 1926 .

[35]  Bruno Sieger Die Beugung einer ebenen elektrischen Welle an einem Schirm von elliptischem Querschnitt , 1908 .