Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs.

We investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. Using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understanding of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.

[1]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[2]  Wen-feng Sun,et al.  Ultrathin Terahertz Planar Elements , 2012, 1206.7011.

[3]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[4]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[5]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[6]  Zhen Tian,et al.  Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode , 2012 .

[7]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[8]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[9]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[10]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[11]  F. Lederer,et al.  Analogue of electromagnetically induced transparency in a terahertz metamaterial , 2009, 0907.1937.

[12]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[13]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[14]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[15]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[16]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics express.

[17]  Xin Zhang,et al.  Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators , 2011 .

[18]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[19]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[20]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[21]  D. R. Chowdhury,et al.  Tailored resonator coupling for modifying the terahertz metamaterial response. , 2011, Optics express.

[22]  Xiaoguang Zhao,et al.  Voltage-tunable dual-layer terahertz metamaterials , 2016, Microsystems & Nanoengineering.

[23]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[24]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[25]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[26]  Harald Giessen,et al.  Coupling effects in optical metamaterials. , 2010, Angewandte Chemie.

[27]  J. O’Hara,et al.  Antireflection coating using metamaterials and identification of its mechanism. , 2010, Physical review letters.

[28]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[29]  F. Medina,et al.  Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments , 2003 .

[30]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[31]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[32]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[33]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[34]  Houtong Chen,et al.  Metasurface optical antireflection coating , 2014 .

[35]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[36]  L. Guo,et al.  Polarization rotation with ultra-thin bianisotropic metasurfaces , 2016 .

[37]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[38]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.