Chromatin proteins captured by ChIP–mass spectrometry are linked to dosage compensation in Drosophila

[1]  J. Huh,et al.  Multivalent di‐nucleosome recognition enables the Rpd3S histone deacetylase complex to tolerate decreased H3K36 methylation levels , 2012, The EMBO journal.

[2]  P. Park,et al.  Identification of Chromatin-Associated Regulators of MSL Complex Targeting in Drosophila Dosage Compensation , 2012, PLoS genetics.

[3]  Jernej Ule,et al.  Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing , 2012, PLoS genetics.

[4]  Thomas Conrad,et al.  Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription , 2012, Nature Reviews Genetics.

[5]  R. Sachidanandam,et al.  A systematic analysis of Drosophila TUDOR domain‐containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors , 2011, The EMBO journal.

[6]  A. Shilatifard,et al.  The COMPASS Family of H3K4 Methylases in Drosophila , 2011, Molecular and Cellular Biology.

[7]  Yi Zhang,et al.  The diverse functions of Dot1 and H3K79 methylation. , 2011, Genes & development.

[8]  Norbert Perrimon,et al.  A genome-scale shRNA resource for transgenic RNAi in Drosophila , 2011, Nature Methods.

[9]  Tobias Straub,et al.  Global Analysis of the Relationship between JIL-1 Kinase and Transcription , 2011, PLoS genetics.

[10]  J. Greenblatt,et al.  Molecular Systems Biology 6; Article number 448; doi:10.1038/msb.2010.104 Citation: Molecular Systems Biology 6:448 , 2022 .

[11]  Lovelace J. Luquette,et al.  Comprehensive analysis of the chromatin landscape in Drosophila , 2010, Nature.

[12]  S. Moore,et al.  Structural and Biochemical Studies on the Chromo-barrel Domain of Male Specific Lethal 3 (MSL3) Reveal a Binding Preference for Mono- or Dimethyllysine 20 on Histone H4* , 2010, The Journal of Biological Chemistry.

[13]  A. Hyman,et al.  Quantitative Interaction Proteomics and Genome-wide Profiling of Epigenetic Histone Marks and Their Readers , 2010, Cell.

[14]  S. Khorasanizadeh,et al.  Corecognition of DNA and a methylated histone tail by MSL3 chromodomain , 2010, Nature Structural &Molecular Biology.

[15]  Albert Jeltsch,et al.  The Dnmt3a PWWP Domain Reads Histone 3 Lysine 36 Trimethylation and Guides DNA Methylation* , 2010, The Journal of Biological Chemistry.

[16]  Berthold Göttgens,et al.  Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1 , 2010, Nature Structural &Molecular Biology.

[17]  A. Shilatifard,et al.  Histone H3 lysine 4 (H3K4) methylation in development and differentiation. , 2010, Developmental biology.

[18]  Ian M. Fingerman,et al.  One-pot shotgun quantitative mass spectrometry characterization of histones. , 2009, Journal of proteome research.

[19]  Sean D. Taverna,et al.  Mapping the local protein interactome of the NuA3 histone acetyltransferase , 2009, Protein science : a publication of the Protein Society.

[20]  P. Park,et al.  Drosophila MSL complex globally acetylates H4 Lys16 on the male X chromosome for dosage compensation , 2009, Nature Structural &Molecular Biology.

[21]  M. Kuroda,et al.  Drosophila dosage compensation: a complex voyage to the X chromosome , 2009, Development.

[22]  D. Figeys,et al.  A Novel Proteomics Approach for the Discovery of Chromatin-associated Protein Networks*S , 2009, Molecular & Cellular Proteomics.

[23]  Robert E. Kingston,et al.  Purification of Proteins Associated with Specific Genomic Loci , 2009, Cell.

[24]  Bing Li,et al.  The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila X chromosome , 2008, Nature Structural &Molecular Biology.

[25]  Peter J. Park,et al.  A Sequence Motif within Chromatin Entry Sites Directs MSL Establishment on the Drosophila X Chromosome , 2008, Cell.

[26]  Nicholas M. Luscombe,et al.  Genome-wide Analysis Reveals MOF as a Key Regulator of Dosage Compensation and Gene Expression in Drosophila , 2008, Cell.

[27]  D. Schübeler,et al.  Transcription-Coupled Methylation of Histone H3 at Lysine 36 Regulates Dosage Compensation by Enhancing Recruitment of the MSL Complex in Drosophila melanogaster , 2008, Molecular and Cellular Biology.

[28]  Daniel F Tardiff,et al.  Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking , 2007, Proceedings of the National Academy of Sciences.

[29]  Bing Li,et al.  MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. , 2007, Molecular cell.

[30]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[31]  Peter J Park,et al.  High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. , 2006, Genes & development.

[32]  B. van Steensel,et al.  Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. , 2006, Genes & development.

[33]  Pierre Baldi,et al.  A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions , 2006, Molecular & Cellular Proteomics.

[34]  Malgorzata Schelder,et al.  Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. , 2006, Molecular cell.

[35]  Bing Li,et al.  Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription , 2005, Cell.

[36]  W. G. Kelly,et al.  Chromatin remodeling in dosage compensation. , 2005, Annual review of genetics.

[37]  Peter J Park,et al.  Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. , 2005, Genes & development.

[38]  G. Gilfillan,et al.  The Drosophila MSL complex activates the transcription of target genes. , 2005, Genes & development.

[39]  S. Henikoff,et al.  Genome-scale profiling of histone H3.3 replacement patterns , 2005, Nature Genetics.

[40]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[41]  F. Tamanoi,et al.  A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Straub,et al.  Functional integration of the histone acetyltransferase MOF into the dosage compensation complex , 2004, The EMBO journal.

[43]  C. Moore,et al.  The Essential WD Repeat Protein Swd2 Has Dual Functions in RNA Polymerase II Transcription Termination and Lysine 4 Methylation of Histone H3 , 2004, Molecular and Cellular Biology.

[44]  Sebastian Maurer-Stroh,et al.  The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. , 2003, Trends in biochemical sciences.

[45]  Xiaodong Cheng,et al.  The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds , 2002, Nature Structural Biology.

[46]  C. Allis,et al.  Linking Global Histone Acetylation to the Transcription Enhancement of X-chromosomal Genes in Drosophila Males* , 2001, The Journal of Biological Chemistry.

[47]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[48]  K. Johansen,et al.  Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex , 2000, The Journal of cell biology.

[49]  P. Becker,et al.  Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. , 2000, Molecular cell.

[50]  C. Allis,et al.  The Drosophila MSL Complex Acetylates Histone H4 at Lysine 16, a Chromatin Modification Linked to Dosage Compensation , 2000, Molecular and Cellular Biology.

[51]  Ronald L. Davis,et al.  Epigenetic Spreading of the Drosophila Dosage Compensation Complex from roX RNA Genes into Flanking Chromatin , 1999, Cell.

[52]  A. Wolffe,et al.  A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. , 1998, Molecular cell.

[53]  M. Kuroda,et al.  Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly , 1998, The EMBO journal.

[54]  J. Lucchesi,et al.  mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila , 1997, The EMBO journal.

[55]  B. Turner,et al.  Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei , 1992, Cell.

[56]  J. Cronan Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. , 1990, The Journal of biological chemistry.

[57]  P. Kaiser,et al.  An Integrated Mass Spectrometry-based Proteomic Approach QUANTITATIVE ANALYSIS OF TANDEM AFFINITY-PURIFIED IN VIVO CROSS-LINKED PROTEIN COMPLEXES (QTAX) TO DECIPHER THE 26 S PROTEASOME-INTERACTING NETWORK* , 2006 .

[58]  G. Schotta,et al.  Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system , 2000, Molecular and General Genetics MGG.