Parallel evolutionary algorithms for optimization problems in aerospace engineering

Abstract This paper presents the recent developments in hierarchical genetic algorithms (HGAs) to speed up the optimization of aerodynamic shapes. It first introduces HGAs, a particular instance of parallel GAs based on the notion of interconnected sub-populations evolving independently. Previous studies have shown the advantages of introducing a multi-layered hierarchical topology in parallel GAs. Such a topology allows the use of multiple models for optimization problems, and shows that it is possible to mix fast low-fidelity models for exploration and expensive high-fidelity models for exploitation. Finally, a new class of multi-objective optimizers mixing HGAs and Nash Game Theory is defined. These methods are tested for solving design optimization problems in aerodynamics. A parallel version of this approach running a cluster of PCs demonstrate the convergence speed up on an inverse nozzle problem and a high-lift problem for a multiple element airfoil.