An atomic boson sampler

A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics. Here, we demonstrate a new combination of tools for implementing boson sampling using ultracold atoms in a two-dimensional, tunnel-coupled optical lattice. These tools include fast and programmable preparation of large ensembles of nearly identical bosonic atoms ($99.5^{+0.5}_{-1.6}\;\%$ indistinguishability) by means of rearrangement with optical tweezers and high-fidelity optical cooling, propagation for variable evolution time in the lattice with low loss ($5.0(2)\;\%$, independent of evolution time), and high fidelity detection of the atom positions after their evolution (typically $99.8(1)\;\%$). With this system, we study specific instances of boson sampling involving up to $180$ atoms distributed among $\sim 1000$ sites in the lattice. Direct verification of a given boson sampling distribution is not feasible in this regime. Instead, we introduce and perform targeted tests to determine the indistinguishability of the prepared atoms, to characterize the applied family of single particle unitaries, and to observe expected bunching features due to interference for a large range of atom numbers. When extended to interacting systems, our work demonstrates the core capabilities required to directly assemble ground and excited states in simulations of various Hubbard models.

[1]  Hao Li,et al.  Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage. , 2023, Physical review letters.

[2]  P. Zoller,et al.  Fermionic quantum processing with programmable neutral atom arrays , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[3]  B. Fefferman,et al.  On classical simulation algorithms for noisy Boson Sampling , 2023, 2301.11532.

[4]  I. Bloch,et al.  Observation of Brane Parity Order in Programmable Optical Lattices , 2023, Physical Review X.

[5]  I. Bloch,et al.  An unsupervised deep learning algorithm for single-site reconstruction in quantum gas microscopes , 2022, Communications Physics.

[6]  Shuai Wang,et al.  Accelerating the Assembly of Defect-Free Atomic Arrays with Maximum Parallelisms , 2022, Physical Review Applied.

[7]  Vanessa Koh,et al.  Parallel Assembly of Arbitrary Defect-Free Atom Arrays with a Multitweezer Algorithm , 2022, Physical Review Applied.

[8]  Trevor Vincent,et al.  Quantum computational advantage with a programmable photonic processor , 2022, Nature.

[9]  D. Stamper-Kurn,et al.  Mid-Circuit Cavity Measurement in a Neutral Atom Array. , 2022, Physical review letters.

[10]  C. Chin,et al.  Design and construction of a quantum matter synthesizer. , 2022, The Review of scientific instruments.

[11]  W. Bakr,et al.  Two-Dimensional Programmable Tweezer Arrays of Fermions. , 2022, Physical review letters.

[12]  Andrew M. Childs,et al.  Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice , 2022, Science.

[13]  A. Kaufman,et al.  Ytterbium Nuclear-Spin Qubits in an Optical Tweezer Array , 2021, Physical Review X.

[14]  A. Kaufman,et al.  Long-lived Bell states in an array of optical clock qubits , 2021, Nature Physics.

[15]  Hao Li,et al.  Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. , 2021, Physical review letters.

[16]  Liang Jiang,et al.  Classical simulation of lossy boson sampling using matrix product operators , 2021, Physical Review A.

[17]  M. Lukin,et al.  Quantum phases of matter on a 256-atom programmable quantum simulator , 2020, Nature.

[18]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[19]  E. Oelker,et al.  Half-minute-scale atomic coherence and high relative stability in a tweezer clock , 2020, Nature.

[20]  A. Buchleitner,et al.  Many-body interference in bosonic dynamics , 2020, New Journal of Physics.

[21]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[22]  D. J. Brod,et al.  Classical simulation of linear optics subject to nonuniform losses , 2019, Quantum.

[23]  Minh C. Tran,et al.  Complexity phase diagram for interacting and long-range bosonic Hamiltonians , 2019, Physical review letters.

[24]  Valery Shchesnovich,et al.  Distinguishing noisy boson sampling from classical simulations , 2019, Quantum.

[25]  Anthony Laing,et al.  Generation and sampling of quantum states of light in a silicon chip , 2018, Nature Physics.

[26]  A. Cooper,et al.  2000-Times Repeated Imaging of Strontium Atoms in Clock-Magic Tweezer Arrays. , 2018, Physical review letters.

[27]  A. Cooper,et al.  Alkaline-Earth Atoms in Optical Tweezers , 2018, Physical Review X.

[28]  A. Kaufman,et al.  Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays , 2018, Physical Review X.

[29]  Juan Miguel Arrazola,et al.  Gaussian boson sampling using threshold detectors , 2018, Physical Review A.

[30]  M. Bukov,et al.  QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins , 2018, SciPost Physics.

[31]  J. Ye,et al.  Emergence of multi-body interactions in a fermionic lattice clock , 2018, Nature.

[32]  Daniel J. Brod,et al.  Classical simulation of photonic linear optics with lost particles , 2018, New Journal of Physics.

[33]  Jelmer J. Renema,et al.  Simulating boson sampling in lossy architectures , 2017, Quantum.

[34]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[35]  Minh C. Tran,et al.  Complexity of sampling as an order parameter , 2017, Physical review letters.

[36]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[37]  Eric R. Anschuetz,et al.  Atom-by-atom assembly of defect-free one-dimensional cold atom arrays , 2016, Science.

[38]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[39]  Matthew Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[40]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[41]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[42]  V S Shchesnovich,et al.  Universality of Generalized Bunching and Efficient Assessment of Boson Sampling. , 2015, Physical review letters.

[43]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[44]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[45]  A. Aspect,et al.  Atomic Hong–Ou–Mandel experiment , 2014, Nature.

[46]  Vincent M. Klinkhamer,et al.  Two fermions in a double well: exploring a fundamental building block of the Hubbard model. , 2014, Physical review letters.

[47]  M. Tichy Sampling of partially distinguishable bosons and the relation to the multidimensional permanent , 2014, 1410.7687.

[48]  Matthew Rispoli,et al.  Strongly correlated quantum walks in optical lattices , 2014, Science.

[49]  M. Foss-Feig,et al.  Two-particle quantum interference in tunnel-coupled optical tweezers , 2014, Science.

[50]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[51]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[52]  T. Ralph,et al.  Boson sampling from a Gaussian state. , 2013, Physical review letters.

[53]  Nicolò Spagnolo,et al.  General rules for bosonic bunching in multimode interferometers. , 2013, Physical review letters.

[54]  A. Politi,et al.  Observing fermionic statistics with photons in arbitrary processes , 2013, Scientific Reports.

[55]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[56]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[57]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[58]  J D Thompson,et al.  Coherence and Raman sideband cooling of a single atom in an optical tweezer. , 2012, Physical review letters.

[59]  C. Regal,et al.  Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State , 2012, 1209.2087.

[60]  J. O'Brien,et al.  Super-stable tomography of any linear optical device , 2012, 1208.2868.

[61]  G. Vallone,et al.  Two-particle bosonic-fermionic quantum walk via integrated photonics. , 2011, Physical review letters.

[62]  M. J. Withford,et al.  Two-photon quantum walks in an elliptical direct-write waveguide array , 2011, 1103.0604.

[63]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[64]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[65]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[66]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[67]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[68]  David E. Pritchard,et al.  Optics and Interferometry with Atoms and Molecules , 2009 .

[69]  R. Côté,et al.  Two-photon photoassociative spectroscopy of ultracold 88-Sr , 2008, 0808.3434.

[70]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[71]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[72]  Giovanna Morigi,et al.  Laser Cooling of Trapped Ions , 2003 .

[73]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[74]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[75]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[76]  Andrew M. Childs,et al.  Universal computation by multi-particle quantum walk arXiv , 2012 .

[77]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[78]  R. F.,et al.  Mathematical Statistics , 1944, Nature.